
Fonctions de complexité et

complexité tout court

Pascal Vanier

Laboratoire d’Algorithmique Complexité et Logique, UPEC

Dyadisc 3, le reretour

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

A tiling or configuration is a
coloring of Zd :

1/26

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

A tiling or configuration is a
coloring of Zd :

1/26

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

A tiling or configuration is a
coloring of Zd :

1/26

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

A tiling or configuration is a
coloring of Zd :

1/26

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

A tiling or configuration is a
coloring of Zd :

1/26

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

A tiling or configuration is a
coloring of Zd :

1/26

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

A tiling or configuration is a
coloring of Zd :

1/26

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

A tiling or configuration is a
coloring of Zd :

1/26

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

A tiling or configuration is a
coloring of Zd :

1/26

Subshifts and subshifts of finite type
A finite alphabet:

Σ = { , }

A finite number of forbidden
patterns:

F =
{

, ,

}

Subshift of finite type (SFT):
set of configurations avoiding
F . We note XF :

XF =
{

, , , ,. . .

}

The family my also be infinite

we then talk about subshifts.

A tiling or configuration is a
coloring of Zd :

1/26

Things get interesting in d ≥ 2
[Berger 1964] There exists an SFT containing only
non-periodic points.

[Berger 1964]

2/26

Things get interesting in d ≥ 2
[Berger 1964] There exists an SFT containing only
non-periodic points.

[Robinson 1971]

2/26

Things get interesting in d ≥ 2
[Berger 1964] There exists an SFT containing only
non-periodic points.

And numerous others:

[Knuth 1968]

[Anderaa & Lewis 1974]

[Kari 1996]

[Ollinger 2008]

[Durand, Romashchenko & Shen 2008]

[Poupet 2010]

[Jeandel & Rao 2015]

...

2/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

q0 0 0 0 0 0 0 1 0

1 q1 0 0 0 0 0 1 0

1 1 q2 0 0 0 0 1 0

1 q3 1 1 0 0 0 1 0

Infinite tiling⇔ Turing
machine does not halt

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

(q,a) −→ (q′ , a′ ,→)

q a
q′

a′

aq

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

(q,a) −→ (q′ , a′ ,↑)

q a

q′ a′

aq

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

(q,a) −→ (q′ , a′ ,←)

q a
q′

a′

aq

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

q0

0 0 0 0 0 0 0 0 0 0 0

q1

1 0 0 0 0 0 0 0 0 0 0

q2

1 1 0 0 0 0 0 0 0 0 0

q3

1 1 1 0 0 0 0 0 0 0 0

te
m

ps

espace

q0 0 0 0 0 0 0 1 0

1 q1 0 0 0 0 0 1 0

1 1 q2 0 0 0 0 1 0

1 q3 1 1 0 0 0 1 0

Infinite tiling⇔ Turing
machine does not halt

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

3/26

Nothing is easy in d ≥ 2
Theorem [Berger 1964] It is undecidable to know whether XF
is empty, given F as input.

3/26

SFTs without any computable

configuration

There exists a TM M that does not

halt only on non computable

oracles:
q0 0,0 0,1 0,1 0,0 0,1 0,0 1,0 0,1

1,0 q1 0,1 0,1 0,0 0,1 0,0 1,0 0,1

1,0 1,1 q2 0,1 0,0 0,1 0,0 1,0 0,1

1,0 q3 1,1 1,1 0,0 0,1 0,0 1,0 0,1

1,0 1,1 q4 1,1 0,0 0,1 0,0 1,0 0,1

1,0 1,1 0,1 q3 0,0 0,1 0,0 1,0 0,1

The quarter plane may be tiled iffM
does not halt on x.

Theorem [Hanf-Myers 1974] There exist SFTs containing only non

computable points.

4/26

The right tool

SFTs are dynamical systems, some quantities/concepts are
important:

• Topological Entropy : measure of the growth of the
number of patterns

[Hochman & Meyerovitch 2010] Entropies of SFTs correspond
to the upper semi-computable real numbers.

• Number of periodic points

[Jeandel & V. 2015] The functions counting the number of
periodic points are exactly the functions of #P.

• Subactions, non-expansive directions, growth-type
invariants...

5/26

The right tool

SFTs are dynamical systems, some quantities/concepts are
important:

• Topological Entropy : measure of the growth of the
number of patterns

[Hochman & Meyerovitch 2010] Entropies of SFTs correspond
to the upper semi-computable real numbers.

• Number of periodic points

[Jeandel & V. 2015] The functions counting the number of
periodic points are exactly the functions of #P.

• Subactions, non-expansive directions, growth-type
invariants...

5/26

Turing degrees

• x ≤T y if there exists a TM that outputs x with input y.

• x ≡T y if x ≤T y and x ≥T y.

• A Turing degree is an equivalence class for ≡T . The
degree of x is noted degT x.

The simplest degree is 0: the degree of computable objects.

• Turing degree of a configuration.

• Turing degree spectrum of a subshift:

Sp (X) =
{
degT x

∣∣∣ x ∈ X}
6/26

Turing degrees

There exists a degree a⊕b which is the
smallest above both a and b.

• Every Turing degree contains exactly
ℵ0 elements.

• There are 2ℵ0 Turing degrees.

• There are at most ℵ0 degrees below
any degree.

• There are 2ℵ0 degrees above each
degree.

0
a b

a⊕b

0 the degree of
computable
sequences.

There exist incomparable degrees a,b:

a 6≤T b and b 6≤T a

7/26

Turing degree spectra of subshifts

Theorem [Jeandel & V. 2013] For any effectively closed set of
Turing degrees S, there exists an SFT X with the same

spectrum up to 0:

Sp (S)∪ {0} = Sp (X)

8/26

Turing degree spectra of subshifts

Theorem [Jeandel & V. 2013] For any closed set of Turing
degrees S, there exists an subshift X with the same spectrum

up to 0:
Sp (S)∪ {0} = Sp (X)

· · · − −−−−−−−1− 0−−1−−− 1−−−−0−−−−− 1−−· · ·

8/26

Turing degree spectra of subshifts

Theorem [Borello, Cervelle & V. 2013] Spectra of limit sets of
cellular automata are the effectively closed sets of Turing
degrees containing 0.

4
3
2
1

2
1

time

time

CA TM

8/26

Minimality

Definition A subshift X is minimal iff all its configurations

contain the same patterns.

Uniform recurrence. For every
pattern, there exists a window
in which it will always appear.

Example :

Theorem Every subshift contains a minimal subshift

9/26

Minimality

Definition A subshift X is minimal iff all its configurations

contain the same patterns.

Uniform recurrence. For every
pattern, there exists a window
in which it will always appear.

Example :

Theorem Every subshift contains a minimal subshift

9/26

Minimality

Definition A subshift X is minimal iff all its configurations

contain the same patterns.

Uniform recurrence. For every
pattern, there exists a window
in which it will always appear.

Example :

Theorem Every subshift contains a minimal subshift

9/26

Minimality

Definition A subshift X is minimal iff all its configurations

contain the same patterns.

Uniform recurrence. For every
pattern, there exists a window
in which it will always appear.

Example :

Theorem Every subshift contains a minimal subshift

9/26

Minimality

Definition A subshift X is minimal iff all its configurations

contain the same patterns.

Uniform recurrence. For every
pattern, there exists a window
in which it will always appear.

Example :

Theorem Every subshift contains a minimal subshift

9/26

Minimality and Turing degrees

Theorem [Jeandel & V. 2013] Let X be a non finite minimal

subshift, then Sp (X) contains the cone of degrees above any

of its points.

d

Cone above d:

Cd =
{
d′

∣∣∣ d′ ≥T d
}

10/26

Spectra of minimal SFTs
Theorem Let X be a subshift, and x ∈ X be an aperiodic
recurrent point, then Sp (X) contains the cone above degT x.

Proof. We build two computable functions:

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

degT (enc(x,y)) ≤T degT x⊕ y

degT (dec(x)) ≤T degT x

such that (x,y) ∈ A× {0,1}N:

dec(enc(x,y)) = y

So we have this inequality:

degT (y) ≤T degT (enc(x,y)) ≤T degT (sup(x,y))

In particular if we choose y such that degT (y) ≥ degT (x), then

degT (enc(x,y)) = degT (y)

11/26

Spectra of minimal SFTs
Theorem Let X be a subshift, and x ∈ X be an aperiodic
recurrent point, then Sp (X) contains the cone above degT x.

Proof. We build two computable functions:

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N
degT (enc(x,y)) ≤T degT x⊕ y

degT (dec(x)) ≤T degT x

such that (x,y) ∈ A× {0,1}N:

dec(enc(x,y)) = y

So we have this inequality:

degT (y) ≤T degT (enc(x,y)) ≤T degT (sup(x,y))

In particular if we choose y such that degT (y) ≥ degT (x), then

degT (enc(x,y)) = degT (y)

11/26

Spectra of minimal SFTs
Theorem Let X be a subshift, and x ∈ X be an aperiodic
recurrent point, then Sp (X) contains the cone above degT x.

Proof. We build two computable functions:

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N
degT (enc(x,y)) ≤T degT x⊕ y

degT (dec(x)) ≤T degT x

such that (x,y) ∈ A× {0,1}N:

dec(enc(x,y)) = y

So we have this inequality:

degT (y) ≤T degT (enc(x,y)) ≤T degT (sup(x,y))

In particular if we choose y such that degT (y) ≥ degT (x), then

degT (enc(x,y)) = degT (y)

11/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x
ci

cie f
ci+1

c0c1c2c3lim∞ ci = enc(x,y)

By induction: from a word ci construct ci+1.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x
ci

cie f
ci+1

c0c1c2c3lim∞ ci = enc(x,y)

Minimality: we know that ci appears in any window of
sufficiently big.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x
ci ci

e f
ci+1

c0c1c2c3lim∞ ci = enc(x,y)

Minimality: we know that ci appears in any window of
sufficiently big.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x
ci cie f

ci+1

c0c1c2c3lim∞ ci = enc(x,y)

x cannot be periodic since X is non finite.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x
ci cie f

ci+1

c0c1c2c3lim∞ ci = enc(x,y)

x cannot be periodic since X is non finite.
e < f or e > f , both cases will appear somewhere.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x
ci cie f
ci+1

c0c1c2c3lim∞ ci = enc(x,y)

ci+1 is constructed according to yi :

• if yi = 0, take e < f ,

• if yi = 1, take e > f .

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x

ci cie f
ci+1

c0

c1c2c3lim∞ ci = enc(x,y)

Start with c0 = x0, and iterate.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x

ci cie f
ci+1

c0

c1

c2c3lim∞ ci = enc(x,y)

Start with c0 = x0, and iterate.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x

ci cie f
ci+1

c0c1

c2

c3lim∞ ci = enc(x,y)

Start with c0 = x0, and iterate.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x

ci cie f
ci+1

c0c1c2

c3

lim∞ ci = enc(x,y)

Start with c0 = x0, and iterate.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

x

ci cie f
ci+1

c0c1c2c3

lim∞ ci = enc(x,y)

Start with c0 = x0, and iterate.

12/26

Idea of the proof : in dimension 1

• enc : A× {0,1}N→ A

• dec : A→ {0,1}N

enc(x,y)
ci cie f
ci+1

c0c1c2c3lim∞ ci = enc(x,y)

Start with c0 = x0, and look for the first differing letters e, f .

• if e > f then yi = 1

• if e < f then yi = 0

We now know c1 and can look for c2 and so on...

12/26

Complexity function

Dimension 1 from now on.
Most results do not translate to higher dimensions.

Definition The complexity function:

cn(X)

counts the number of patterns of size n.

13/26

Linear complexity
The trivial cases

• cn(X) < n+1⇒ Only periodic configurations

· · ·123123123123123 · · ·

• cn(X) = n+ k and eventually periodic on both sides

· · ·000000100000000 · · ·

Sp (X) = 0

14/26

Linear complexity
Sturmian subshifts

• Low complexity : cn(X) = n+1

• No periodic points

• Only aperiodic recurrent points

· · ·101001001010︸ ︷︷ ︸
w

010100100︸ ︷︷ ︸
w’

1010 · · ·

• If w,w′ have the same length then ||w|1 − |w′ |1| ≤ 1.

• Density of 1s tends to {α}.

Sp (X) = CdegT α

15/26

Linear complexity

Theorem If cn(X) ∼ tn then, Sp (X) contains at most k isolated
degrees and k cones with k + k′ ≤ t.

Lemma If cnX ∼ tn then X contains at most t non recurrent

aperiodic configurations.

at most t isolated degrees.

Lemma If cnX ∼ tn and X contains k non recurrent aperiodic

configurations then X contains at most t − k recurrent
aperiodic configurations with different language.

{L (x) | x aperiodic recurrent}

at most t − k cones.
not directly though...

16/26

Linear complexity
Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

x ≥T L (x)

Theorem [Cassaigne 1995] If x has linear growth, then
cn+1(x)− cn(x) is bounded by a constant.

There exists N and M such that for infinitely many n > N :

cn+1(X)− cn(X) =M

17/26

Linear complexity
Aperiodic recurrent configurations

There exists N and M such that for infinitely many n > N :

cn+1(X)− cn(X) =M

Some words can be followed by different letters:

w0 . . .wn−1

wn

w′n

There are exactly M choices for all words of length n.

18/26

Linear complexity
Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

x ≥T L (x)

Take x as an oracle and output L (x):
• hardcode N,M

• scan x and find all words of the same length with several
choices : S

• Find all n-letter words:
x

s

• We now have Lk(x) for k ≤ n.

19/26

Linear complexity
Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

x ≥T L (x)

Take x as an oracle and output L (x):
• hardcode N,M

• scan x and find all words of the same length with several
choices : S

• Find all n-letter words:
x

s

• We now have Lk(x) for k ≤ n.

19/26

Linear complexity
Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

x ≥T L (x)

Take x as an oracle and output L (x):
• hardcode N,M

• scan x and find all words of the same length with several
choices : S

• Find all n-letter words:
x

s sa

• We now have Lk(x) for k ≤ n.

19/26

Linear complexity
Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

x ≥T L (x)

Take x as an oracle and output L (x):
• hardcode N,M

• scan x and find all words of the same length with several
choices : S

• Find all n-letter words:
x

s sb

• We now have Lk(x) for k ≤ n.

19/26

Linear complexity

Last ingredient:

Lemma If x is aperiodic recurrent, there exists y such that

L (x) = L (y) and degT y = degT L (x)

Theorem If cn(X) ∼ tn then, Sp (X) contains at most k isolated
degrees and k cones with k + k′ ≤ t.

20/26

Linear complexity

Theorem There exist linear complexity subshifts with k cones
and k′ isolated degrees for any k,k′ .

• k cones: union of Sturmians

• k′ isolated degrees:

· · · − −−−−−s0−− · · · − −︸ ︷︷ ︸
f (0)

s1−− · · · − −︸ ︷︷ ︸
f (1)

s2−− · · · − −︸ ︷︷ ︸
f (2)

s3 −−− · · ·

I s ∈ {0,1}N
I f computable and strictly increasing
I same degree as s
I linear growth

21/26

Exponential complexity: positive entropy

Exponential complexity (=positive entropy):

cn(X) ∼ an

Theorem If h(X) > 0, then Sp (X) contains a cone.

Theorem Any spectrum containing a cone can be realized by
a subshift with entropy in this cone.

22/26

The inbetweeners

Slowest Fastest

• Constant Only 0.

• Linear Finite number of cones and isolated degrees.

• Exponential Contain a cone.

• Superlinear ?

23/26

The inbetweeners

Slowest Fastest

• Constant Only 0.

• Linear Finite number of cones and isolated degrees.

• Exponential Contain a cone.

• Superlinear ?

23/26

Slow superlinear complexity
Theorem For any countable set of degrees, S = {d1,d2, . . . }
there exists subshifts with arbitrarily slow superlinear

complexity and spectrum
⋃
Cdi

.

Proof idea.

Take some increasing unbounded f .
Take (αk)k∈N and (mk)k∈N such that

αk→ α0
degT αk = dk

and Lmk

(
Sαk

)
= Lmk

(
Sα0

)
and mf (n)/2 > n

Define

X =
⋃
k

Sαk its spectrum is Sp (X) =
⋃

d ∈ SCd

it is closed since αk→ α0, and hence a subshift.

cn(X) is bounded by nf (n).
24/26

Slow superlinear complexity

Theorem For any countable set of degrees, S = {d1,d2, . . . }
there exists subshifts with arbitrarily slow superlinear

complexity and spectrum S ∪ {0}.

Proof idea.

For each degree di ∈ S include s of degree di:

· · ·0000.102
1
102

2
102

3
1 · · ·102

mi 102
mi+1+s1102

mi+2+s21 · · ·

Limit points:

• · · ·000010000 · · ·
• · · ·000000000 · · ·
• · · ·000010211 · · ·102k1 · · ·

25/26

The inbetweeners

Slowest Fastest

• Constant Only 0.

• Linear Finite number of cones and isolated degrees.

• Exponential Contains a cone.
• Superlinear ∼ Anything is possible. Tradeoff

I Countable unions, any superlinear growth
I Unions, any superlinear computable growth

• Subexponential ∼ Anything is possible

• The rest ∼ Anything is possible

26/26

