# Fonctions de complexité et complexité tout court 

Pascal Vanier<br>Laboratoire d'Algorithmique Complexité et Logique, UPEC

Dyadisc 3, le reretour

## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$



## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$

A tiling or configuration is a coloring of $\mathbb{Z}^{d}$ :

## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$

A finite number of forbidden patterns:

$$
\mathcal{F}=\{\square, \square, \square\}
$$

A tiling or configuration is a coloring of $\mathbb{Z}^{d}$ :

## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$

A finite number of forbidden patterns:

$$
\mathcal{F}=\{\square, \square, \square\}
$$

A tiling or configuration is a coloring of $\mathbb{Z}^{d}$ :


## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$

A finite number of forbidden patterns:

$$
\mathcal{F}=\{\square, \square, \square\}
$$

A tiling or configuration is a coloring of $\mathbb{Z}^{d}$ :

## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$

A finite number of forbidden patterns:

$$
\mathcal{F}=\{\square, \square, \square\}
$$

A tiling or configuration is a coloring of $\mathbb{Z}^{d}$ :

## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$

A finite number of forbidden patterns:

$$
\mathcal{F}=\{\square, \square, \square\}
$$

A tiling or configuration is a coloring of $\mathbb{Z}^{d}$ :

## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$

A finite number of forbidden patterns:

$$
\mathcal{F}=\{\square, \square, \square\}
$$

A tiling or configuration is a coloring of $\mathbb{Z}^{d}$ :

## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$

A finite number of forbidden patterns:

$$
\mathcal{F}=\{\square, \square, \square\}
$$

Subshift of finite type (SFT): set of configurations avoiding $\mathcal{F}$. We note $\mathcal{X}_{\mathcal{F}}$ :

$$
\mathcal{X}_{\mathcal{F}}=\left\{\sum_{\square}, \square, \square, \ldots,\right.
$$

A tiling or configuration is a coloring of $\mathbb{Z}^{d}$ :


## Subshifts and subshifts of finite type

A finite alphabet:

$$
\Sigma=\{\square, \square\}
$$

A finite number of forbidden patterns:

$$
\mathcal{F}=\{\square, \square, \square\}
$$

The family my also be infinite we then talk about subshifts.

Subshift of finite type (SFT): set of configurations avoiding $\mathcal{F}$. We note $\mathcal{X}_{\mathcal{F}}$ :

## Things get interesting in $d \geq 2$

[Berger 1964] There exists an SFT containing only non-periodic points.

[Berger 1964]

## Things get interesting in $d \geq 2$

[Berger 1964] There exists an SFT containing only non-periodic points.

[Robinson 1971]

## Things get interesting in $d \geq 2$

[Berger 1964] There exists an SFT containing only non-periodic points.

## And numerous others:

[Knuth 1968]
[Anderaa \& Lewis 1974]
[Kari 1996]
[Ollinger 2008]
[Durand, Romashchenko \& Shen 2008]
[Poupet 2010]
[Jeandel \& Rao 2015]

## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.

## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


$$
(q, a) \longrightarrow\left(q^{\prime}, a^{\prime}, \rightarrow\right)
$$



## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


$$
(q, a) \longrightarrow\left(q^{\prime}, a^{\prime}, \uparrow\right)
$$



## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.

$(q, a) \longrightarrow\left(q^{\prime}, a^{\prime}, \leftarrow\right)$


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.



Infinite tiling $\Leftrightarrow$ Turing machine does not halt

## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.

| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |

## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## Nothing is easy in $d \geq 2$

Theorem [Berger 1964] It is undecidable to know whether $\mathcal{X}_{\mathcal{F}}$ is empty, given $\mathcal{F}$ as input.


## SFTs without any computable configuration

There exists a TM $M$ that does not halt only on non computable oracles:


The quarter plane may be tiled iff $M$ does not halt on $x$.

Theorem [Hanf-Myers 1974] There exist SFTs containing only non computable points.

## The right tool

SFTs are dynamical systems, some quantities/concepts are important:

- Topological Entropy : measure of the growth of the number of patterns
- Number of periodic points
- Subactions, non-expansive directions, growth-type invariants...


## The right tool

SFTs are dynamical systems, some quantities/concepts are important:

- Topological Entropy : measure of the growth of the number of patterns
[Hochman \& Meyerovitch 2010] Entropies of SFTs correspond to the upper semi-computable real numbers.
- Number of periodic points
[Jeandel \& V. 2015] The functions counting the number of periodic points are exactly the functions of \#P.
- Subactions, non-expansive directions, growth-type invariants...


## Turing degrees

- $x \leq_{T} y$ if there exists a TM that outputs $x$ with input $y$.
- $x \equiv_{T} y$ if $x \leq_{T} y$ and $x \geq_{T} y$.
- A Turing degree is an equivalence class for $\equiv_{T}$. The degree of $x$ is noted $\operatorname{deg}_{T} x$.

The simplest degree is $\mathbf{0}$ : the degree of computable objects.

- Turing degree of a configuration.
- Turing degree spectrum of a subshift:

$$
\mathbf{S p}(X)=\left\{\operatorname{deg}_{T} x \mid x \in X\right\}
$$

## Turing degrees

There exists a degree $\mathbf{a} \oplus \mathbf{b}$ which is the smallest above both $\mathbf{a}$ and $\mathbf{b}$.

- Every Turing degree contains exactly $\aleph_{0}$ elements.
- There are $2^{\aleph_{0}}$ Turing degrees.
- There are at most $\aleph_{0}$ degrees below any degree.
- There are $2^{\aleph_{0}}$ degrees above each degree.


0 the degree of computable sequences.

There exist incomparable degrees $\mathbf{a}, \mathbf{b}$ :

$$
\mathbf{a} \not \leq_{T} \mathbf{b} \text { and } \mathbf{b} \not \leq_{T} \mathbf{a}
$$

## Turing degree spectra of subshifts

Theorem [Jeandel \& V. 2013] For any effectively closed set of Turing degrees $S$, there exists an SFT $X$ with the same spectrum up to 0 :

$$
\mathbf{S p}(S) \cup\{\mathbf{0}\}=\mathbf{S p}(X)
$$



## Turing degree spectra of subshifts

Theorem [Jeandel \& V. 2013] For any closed set of Turing degrees $S$, there exists an subshift $X$ with the same spectrum up to 0 :

$$
\mathbf{S p}(S) \cup\{\mathbf{0}\}=\mathbf{S p}(X)
$$

$\cdots--------1-0--1---1----0-----1--\cdots$

## Turing degree spectra of subshifts

Theorem [Borello, Cervelle \& V. 2013] Spectra of limit sets of cellular automata are the effectively closed sets of Turing degrees containing 0 .


## Minimality

Definition A subshift $X$ is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.
Example:


Theorem Every subshift contains a minimal subshift

## Minimality

Definition A subshift $X$ is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.
Example:


Theorem Every subshift contains a minimal subshift

## Minimality

Definition A subshift $X$ is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.
Example:


Theorem Every subshift contains a minimal subshift

## Minimality

Definition A subshift $X$ is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.
Example:


Theorem Every subshift contains a minimal subshift

## Minimality

Definition A subshift $X$ is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.
Example:


Theorem Every subshift contains a minimal subshift

## Minimality and Turing degrees

Theorem [Jeandel \& V. 2013] Let $X$ be a non finite minimal subshift, then $\mathbf{S p}(X)$ contains the cone of degrees above any of its points.

Cone above d:

$$
\mathcal{C}_{\mathbf{d}}=\left\{\mathbf{d}^{\prime} \mid \mathbf{d}^{\prime} \geq_{T} \mathbf{d}\right\}
$$

## Spectra of minimal SFTs

Theorem Let $X$ be a subshift, and $x \in X$ be an aperiodic recurrent point, then $\mathbf{S p}(X)$ contains the cone above $\operatorname{deg}_{T} \mathrm{x}$.

Proof. We build two computable functions:

- enc : $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$
such that $(x, y) \in A \times\{0,1\}^{\mathbb{N}}$ :

$$
\operatorname{dec}(\operatorname{enc}(x, y))=y
$$

## Spectra of minimal SFTs

Theorem Let $X$ be a subshift, and $x \in X$ be an aperiodic recurrent point, then $\mathbf{S p}(X)$ contains the cone above $\operatorname{deg}_{T} x$.

Proof. We build two computable functions:

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$

$$
\begin{aligned}
& \operatorname{deg}_{T}(\operatorname{enc}(x, y)) \leq_{T} \operatorname{deg}_{T} x \oplus y \\
& \operatorname{deg}_{T}(\operatorname{dec}(x)) \leq_{T} \operatorname{deg}_{T} x
\end{aligned}
$$

such that $(x, y) \in A \times\{0,1\}^{\mathbb{N}}$ :

$$
\operatorname{dec}(\operatorname{enc}(x, y))=y
$$

## Spectra of minimal SFTs

Theorem Let $X$ be a subshift, and $x \in X$ be an aperiodic recurrent point, then $\mathbf{S p}(X)$ contains the cone above $\operatorname{deg}_{T} x$.

Proof. We build two computable functions:

- enc : $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$

$$
\begin{aligned}
& \operatorname{deg}_{T}(\operatorname{enc}(x, y)) \leq_{T} \operatorname{deg}_{T} x \oplus y \\
& \operatorname{deg}_{T}(\operatorname{dec}(x)) \leq_{T} \operatorname{deg}_{T} x
\end{aligned}
$$

such that $(x, y) \in A \times\{0,1\}^{\mathbb{N}}$ :

$$
\operatorname{dec}(\operatorname{enc}(x, y))=y
$$

So we have this inequality:

$$
\operatorname{deg}_{T}(y) \leq_{T} \operatorname{deg}_{T}(\operatorname{enc}(x, y)) \leq_{T} \operatorname{deg}_{T}(\sup (x, y))
$$

In particular if we choose $y$ such that $\operatorname{deg}_{T}(y) \geq \operatorname{deg}_{T}(x)$, then

$$
\operatorname{deg}_{T}(\operatorname{enc}(x, y))=\operatorname{deg}_{T}(y)
$$

## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$


By induction: from a word $c_{i}$ construct $c_{i+1}$.

## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$


Minimality: we know that $c_{i}$ appears in any window of sufficiently big.

## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$


Minimality: we know that $c_{i}$ appears in any window of sufficiently big.

## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$

$x$ cannot be periodic since $X$ is non finite.


## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$

$x$ cannot be periodic since $X$ is non finite.
$e<f$ or $e>f$, both cases will appear somewhere.


## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$

$c_{i+1}$ is constructed according to $y_{i}$ :
- if $y_{i}=0$, take $e<f$,
- if $y_{i}=1$, take $e>f$.


## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$


Start with $c_{0}=x_{0}$, and iterate.

## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$


Start with $c_{0}=x_{0}$, and iterate.

## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$


Start with $c_{0}=x_{0}$, and iterate.

## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$


Start with $c_{0}=x_{0}$, and iterate.

## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$

$$
\lim _{\infty} c_{i}=\operatorname{enc}(x, y)
$$

Start with $c_{0}=x_{0}$, and iterate.

## Idea of the proof : in dimension 1

- enc: $A \times\{0,1\}^{\mathbb{N}} \rightarrow A$
- dec : $A \rightarrow\{0,1\}^{\mathbb{N}}$
$\operatorname{enc}(x, y)$


Start with $c_{0}=x_{0}$, and look for the first differing letters e, $f$.

- if $e>f$ then $y_{i}=1$
- if $e<f$ then $y_{i}=0$

We now know $c_{1}$ and can look for $c_{2}$ and so on...

## Complexity function

## Dimension 1 from now on.

Most results do not translate to higher dimensions.

Definition The complexity function:

$$
c_{n}(X)
$$

counts the number of patterns of size $n$.

## Linear complexity

The trivial cases

- $c_{n}(X)<n+1 \Rightarrow$ Only periodic configurations $\cdots 123123123123123 \cdots$
- $c_{n}(X)=n+k$ and eventually periodic on both sides
$\cdots 000000100000000 \cdots$

$$
\operatorname{Sp}(X)=0
$$

## Linear complexity

## Sturmian subshifts

- Low complexity : $c_{n}(X)=n+1$
- No periodic points
- Only aperiodic recurrent points

- If $w, w^{\prime}$ have the same length then $\left||w|_{1}-\left|w^{\prime}\right|_{1}\right| \leq 1$.
- Density of 1 s tends to $\{\alpha\}$.

$$
\operatorname{Sp}(X)=\mathcal{C}_{\operatorname{deg}_{T}} \alpha
$$

## Linear complexity

Theorem If $c_{n}(X) \sim t n$ then, $\mathbf{S p}(X)$ contains at most $k$ isolated degrees and $k$ cones with $k+k^{\prime} \leq t$.

Lemma If $c_{n} X \sim t n$ then $X$ contains at most $t$ non recurrent aperiodic configurations.
at most $t$ isolated degrees.
Lemma If $c_{n} X \sim t n$ and $X$ contains $k$ non recurrent aperiodic configurations then $X$ contains at most $t-k$ recurrent aperiodic configurations with different language.
$\{\mathcal{L}(x) \mid x$ aperiodic recurrent $\}$
at most $t-k$ cones. not directly though...

## Linear complexity

Aperiodic recurrent configurations

Lemma If $x$ is aperiodic recurrent with linear complexity, then

$$
x \geq_{T} \mathcal{L}(x)
$$

Theorem [Cassaigne 1995] If $x$ has linear growth, then $c_{n+1}(x)-c_{n}(x)$ is bounded by a constant.

There exists $N$ and $M$ such that for infinitely many $n>N$ :

$$
c_{n+1}(X)-c_{n}(X)=M
$$

## Linear complexity

Aperiodic recurrent configurations

There exists $N$ and $M$ such that for infinitely many $n>N$ :

$$
c_{n+1}(X)-c_{n}(X)=M
$$

Some words can be followed by different letters:


There are exactly $M$ choices for all words of length $n$.

## Linear complexity

Aperiodic recurrent configurations

Lemma If $x$ is aperiodic recurrent with linear complexity, then

$$
x \geq_{T} \mathcal{L}(x)
$$

Take $x$ as an oracle and output $\mathcal{L}(x)$ :

- hardcode N,M
- scan $x$ and find all words of the same length with several choices: $S$


## Linear complexity

Aperiodic recurrent configurations

Lemma If $x$ is aperiodic recurrent with linear complexity, then

$$
x \geq_{T} \mathcal{L}(x)
$$

Take $x$ as an oracle and output $\mathcal{L}(x)$ :

- hardcode $N, M$
- scan $x$ and find all words of the same length with several choices: $S$
- Find all $n$-letter words:

- We now have $\mathcal{L}_{k}(x)$ for $k \leq n$.


## Linear complexity

Aperiodic recurrent configurations

Lemma If $x$ is aperiodic recurrent with linear complexity, then

$$
x \geq_{T} \mathcal{L}(x)
$$

Take $x$ as an oracle and output $\mathcal{L}(x)$ :

- hardcode $N, M$
- scan $x$ and find all words of the same length with several choices: $S$
- Find all $n$-letter words:

- We now have $\mathcal{L}_{k}(x)$ for $k \leq n$.


## Linear complexity

Aperiodic recurrent configurations
Lemma If $x$ is aperiodic recurrent with linear complexity, then

$$
x \geq_{T} \mathcal{L}(x)
$$

Take $x$ as an oracle and output $\mathcal{L}(x)$ :

- hardcode $N, M$
- scan $x$ and find all words of the same length with several choices: $S$
- Find all $n$-letter words:

- We now have $\mathcal{L}_{k}(x)$ for $k \leq n$.


## Linear complexity

Last ingredient:
Lemma If $x$ is aperiodic recurrent, there exists $y$ such that

$$
\mathcal{L}(x)=\mathcal{L}(y) \text { and } \operatorname{deg}_{T} y=\operatorname{deg}_{T} \mathcal{L}(x)
$$

Theorem If $c_{n}(X) \sim \operatorname{tn}$ then, $\mathbf{S p}(X)$ contains at most $k$ isolated degrees and $k$ cones with $k+k^{\prime} \leq t$.

## Linear complexity

Theorem There exist linear complexity subshifts with $k$ cones and $k^{\prime}$ isolated degrees for any $k, k^{\prime}$.

- $k$ cones: union of Sturmians
- $k^{\prime}$ isolated degrees:

- $s \in\{0,1\}^{\mathbb{N}}$
- $f$ computable and strictly increasing
- same degree as $s$
- linear growth


## Exponential complexity: positive entropy

Exponential complexity (=positive entropy):

$$
c_{n}(X) \sim a^{n}
$$

Theorem If $h(X)>0$, then $\mathbf{S p}(X)$ contains a cone.

Theorem Any spectrum containing a cone can be realized by a subshift with entropy in this cone.

## The inbetweeners

Slowest
Fastest

- Constant Only 0.
- Linear Finite number of cones and isolated degrees.
- Exponential Contain a cone.


## The inbetweeners

Slowest
Fastest

- Constant Only 0.
- Linear Finite number of cones and isolated degrees.
- Exponential Contain a cone.
- Superlinear ?


## Slow superlinear complexity

Theorem For any countable set of degrees, $S=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots\right\}$ there exists subshifts with arbitrarily slow superlinear complexity and spectrum $\cup \mathcal{C}_{d_{i}}$.

## Proof idea.

Take some increasing unbounded $f$.
Take $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ and $\left(m_{k}\right)_{k \in \mathbb{N}}$ such that

$$
\begin{aligned}
& \alpha_{k} \rightarrow \alpha_{0} \\
& \operatorname{deg}_{T} \alpha_{k}=\mathbf{d}_{\mathbf{k}}
\end{aligned} \quad \text { and } \quad \mathcal{L}_{m_{k}}\left(S_{\alpha_{k}}\right)=\mathcal{L}_{m_{k}}\left(S_{\alpha_{0}}\right) \quad \text { and } \quad m_{f(n) / 2}>n
$$

Define

$$
X=\bigcup_{k} S_{\alpha_{k}} \quad \text { its spectrum is } \operatorname{Sp}(X)=\bigcup \mathbf{d} \in S \mathcal{C}_{\mathbf{d}}
$$

it is closed since $\alpha_{k} \rightarrow \alpha_{0}$, and hence a subshift.
$c_{n}(X)$ is bounded by $n f(n)$.

## Slow superlinear complexity

Theorem For any countable set of degrees, $S=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots\right\}$ there exists subshifts with arbitrarily slow superlinear complexity and spectrum $S \cup\{0\}$.

Proof idea.
For each degree $\mathbf{d}_{\mathbf{i}} \in S$ include $s$ of degree $\mathbf{d}_{\mathbf{i}}$ :

$$
\cdots 0000.10^{2^{1}} 10^{2^{2}} 10^{2^{3}} 1 \cdots 10^{2^{m_{i}}} 10^{2^{m_{i}}+1+s_{1}} 10^{2^{m_{i}}+2+s_{2}} 1 \cdots
$$

Limit points:

- …000010000…
- ...0000000000...
- $\cdots 000010^{2^{1}} 1 \cdots 10^{2^{k}} 1 \cdots$


## The inbetweeners

Slowest
Fastest

- Constant Only 0.
- Linear Finite number of cones and isolated degrees.
- Exponential Contains a cone.
- Superlinear ~Anything is possible. Tradeoff
- Countable unions, any superlinear growth
- Unions, any superlinear computable growth
- Subexponential ~ Anything is possible
- The rest $\sim$ Anything is possible


