Fonctions de complexité et complexité tout court

Pascal Vanier

Laboratoire d'Algorithmique Complexité et Logique, UPEC

Dyadisc 3, le reretour

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

		~	-	$\sim \sim -$	\sim	 $\sim \sim$	\sim
Μ	 				ŤŤ		
\sum							
(
\vdash							
							'
\vdash							-(
{							
\square							
\rangle							
\setminus							1
\square							4
1							1
\vdash							
)							`
\subseteq						 	
(
				~	-	_	

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

A finite number of forbidden patterns:

 $\mathcal{F} = \left\{ \blacksquare, \blacksquare, \blacksquare \right\}$

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

A finite number of forbidden patterns:

 $\mathcal{F} = \left\{ \blacksquare, \blacksquare, \blacksquare \right\}$

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

A finite number of forbidden patterns:

 $\mathcal{F} = \left\{ \blacksquare, \blacksquare, \blacksquare \right\}$

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

A finite number of forbidden patterns:

 $\mathcal{F} = \left\{ \blacksquare, \blacksquare, \blacksquare \right\}$

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

A finite number of forbidden patterns:

 $\mathcal{F} = \left\{ \blacksquare, \blacksquare, \blacksquare \right\}$

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

A finite number of forbidden patterns:

 $\mathcal{F} = \left\{ \blacksquare, \blacksquare, \blacksquare \right\}$

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

A finite number of forbidden patterns:

 $\mathcal{F} = \left\{ \blacksquare \blacksquare, \blacksquare \blacksquare, \blacksquare \right\}$

Subshift of finite type (SFT): set of configurations avoiding \mathcal{F} . We note $\mathcal{X}_{\mathcal{F}}$:

$$\mathcal{X}_{\mathcal{F}} = \left\{ \begin{array}{c} \\ \end{array}, \end{array}, \begin{array}{c} \\ \end{array}, \end{array} \right\}$$

A finite alphabet:

 $\Sigma = \{\blacksquare, \blacksquare\}$

A finite number of forbidden patterns:

 $\mathcal{F} = \left\{ \blacksquare, \blacksquare, \blacksquare \right\}$

The family my also be infinite we then talk about subshifts.

Subshift of finite type (SFT): set of configurations avoiding \mathcal{F} . We note $\mathcal{X}_{\mathcal{F}}$:

Things get interesting in $d \ge 2$

[Berger 1964] There exists an SFT containing only non-periodic points.

Things get interesting in $d \ge 2$

[Berger 1964] There exists an SFT containing only **non-periodic points**.

[Robinson 1971]

Things get interesting in $d \ge 2$

[Berger 1964] There exists an SFT containing only non-periodic points.

And numerous others:

[Knuth 1968]

```
[Anderaa & Lewis 1974]
```

[Kari 1996]

[Ollinger 2008]

[Durand, Romashchenko & Shen 2008]

[Poupet 2010]

[Jeandel & Rao 2015]

•••

3/26

0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0	1	1	0	0

SFTs without any computable configuration

There exists a TM *M* that does not halt only on non computable oracles:

The quarter plane may be tiled iff M does not halt on x.

Theorem [Hanf-Myers 1974] There exist SFTs containing only non computable points.

The right tool

SFTs are **dynamical systems**, some quantities/concepts are important:

• Topological Entropy : measure of the growth of the number of patterns

• Number of periodic points

• Subactions, non-expansive directions, growth-type invariants...

The right tool

SFTs are **dynamical systems**, some quantities/concepts are important:

• Topological Entropy : measure of the growth of the number of patterns

[Hochman & Meyerovitch 2010] Entropies of SFTs correspond to the upper semi-computable real numbers.

• Number of periodic points

[Jeandel & V. 2015] The functions counting the number of periodic points are exactly the functions of **#P**.

• Subactions, non-expansive directions, growth-type invariants...
Turing degrees

- $x \leq_T y$ if there exists a TM that outputs x with input y.
- $x \equiv_T y$ if $x \leq_T y$ and $x \geq_T y$.
- A Turing degree is an equivalence class for \equiv_T . The degree of *x* is noted deg_T *x*.

The simplest degree is 0: the degree of computable objects.

- Turing degree of a configuration.
- Turing degree spectrum of a subshift:

$$\mathbf{Sp}(X) = \{ \deg_T x \mid x \in X \}$$

Turing degrees

There exists a degree $a \oplus b$ which is the smallest above both a and b.

- Every Turing degree contains exactly \aleph_0 elements.
- There are 2^{\aleph_0} Turing degrees.
- There are at most \aleph_0 degrees below any degree.
- There are 2^{\aleph_0} degrees above each degree.

0 the degree of computable sequences.

There exist **incomparable degrees** *a*, *b*:

 $\mathbf{a} \not\leq_T \mathbf{b}$ and $\mathbf{b} \not\leq_T \mathbf{a}$

Turing degree spectra of subshifts

Theorem [Jeandel & V. 2013] For any **effectively closed** set of Turing degrees S, there exists an SFT X with the **same spectrum up to 0**:

 $\mathbf{Sp}(S) \cup \{\mathbf{0}\} = \mathbf{Sp}(X)$

Turing degree spectra of subshifts

Theorem [Jeandel & V. 2013] For any **closed** set of Turing degrees *S*, there exists an **subshift** *X* with the **same spectrum up to 0**:

 $\mathbf{Sp}(S) \cup \{\mathbf{0}\} = \mathbf{Sp}(X)$

Turing degree spectra of subshifts

Theorem [Borello, Cervelle & V. 2013] Spectra of limit sets of cellular automata are the effectively closed sets of Turing degrees containing **0**.

Definition A subshift *X* is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.

Example:

Definition A subshift *X* is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.

Example:

Definition A subshift *X* is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.

Example:

Definition A subshift *X* is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.

Example:

Definition A subshift *X* is minimal iff all its configurations contain the same patterns.

Uniform recurrence. For every pattern, there exists a window in which it will always appear.

Example:

Minimality and Turing degrees

Theorem [Jeandel & V. 2013] Let *X* be a non finite minimal subshift, then $\mathbf{Sp}(X)$ contains the cone of degrees above any of its points.

Cone above d: $\mathcal{C}_{\mathbf{d}} = \{ \mathbf{d}' \mid \mathbf{d}' \ge_T \mathbf{d} \}$

Spectra of minimal SFTs

Theorem Let *X* be a subshift, and $x \in X$ be an aperiodic recurrent point, then $\mathbf{Sp}(X)$ contains the cone above $\deg_T x$.

Proof. We build two computable functions:

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

such that $(x, y) \in A \times \{0, 1\}^{\mathbb{N}}$:

dec(enc(x,y)) = y

Spectra of minimal SFTs

Theorem Let *X* be a subshift, and $x \in X$ be an aperiodic recurrent point, then $\mathbf{Sp}(X)$ contains the cone above $\deg_T x$.

Proof. We build two computable functions:

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$ $\deg_T(enc(x, y)) \leq_T \deg_T x \oplus y$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

 $\deg_T(dec(x)) \leq_T \deg_T x$

such that $(x, y) \in A \times \{0, 1\}^{\mathbb{N}}$:

dec(enc(x,y)) = y

Spectra of minimal SFTs

Theorem Let *X* be a subshift, and $x \in X$ be an aperiodic recurrent point, then $\mathbf{Sp}(X)$ contains the cone above $\deg_T x$.

Proof. We build two computable functions:

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$ $\deg_T(enc(x, y)) \leq_T \deg_T x \oplus y$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$ $\deg_T(dec(x)) \leq_T \deg_T x$

such that $(x, y) \in A \times \{0, 1\}^{\mathbb{N}}$:

dec(enc(x,y)) = y

So we have this inequality:

$$\deg_T(y) \leq_T \deg_T(enc(x,y)) \leq_T \deg_T(\sup(x,y))$$

In particular if we choose *y* such that $\deg_T(y) \ge \deg_T(x)$, then

 $\deg_T(enc(x,y)) = \deg_T(y)$

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

By induction: from a word c_i construct c_{i+1} .

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

Minimality: we know that c_i appears in any window of sufficiently big.

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \rightarrow \{0, 1\}^{\mathbb{N}}$

Minimality: we know that c_i appears in any window of sufficiently big.

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

x cannot be periodic since X is non finite.

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

x cannot be periodic since *X* is non finite. e < f or e > f, both cases will appear somewhere.

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

- c_{i+1} is constructed according to y_i :
 - if $y_i = 0$, take e < f,
 - if $y_i = 1$, take e > f.

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

Start with $c_0 = x_0$, and iterate.

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

• $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$

•
$$dec: A \to \{0, 1\}^{\mathbb{N}}$$

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \rightarrow \{0, 1\}^{\mathbb{N}}$

X

$$\lim_{\infty} c_i = enc(x, y)$$

- $enc: A \times \{0, 1\}^{\mathbb{N}} \to A$
- $dec: A \to \{0, 1\}^{\mathbb{N}}$

Start with $c_0 = x_0$, and look for the first differing letters e, f.

- if e > f then $y_i = 1$
- if e < f then $y_i = 0$

We now know c_1 and can look for c_2 and so on...

Complexity function

Dimension 1 from now on.

Most results do not translate to higher dimensions.

Definition The complexity function:

 $c_n(X)$

counts the number of patterns of size *n*.

The trivial cases

• $c_n(X) < n + 1 \Rightarrow$ Only periodic configurations

 $\cdots 123123123123123\cdots$

• $c_n(X) = n + k$ and eventually periodic on both sides

 $\cdots 00000010000000\cdots$

 $\mathbf{Sp}(X) = \mathbf{0}$

Sturmian subshifts

- Low complexity : $c_n(X) = n + 1$
- No periodic points
- Only aperiodic recurrent points

 $\cdots 101001 \underbrace{001010}_{W} 010 \underbrace{100100}_{W'} 1010 \cdots$

- If w, w' have the same length then $||w|_1 |w'|_1| \le 1$.
- Density of 1s tends to {*α*}.

 $\mathbf{Sp}(X) = \mathcal{C}_{\deg_T \alpha}$

Theorem If $c_n(X) \sim tn$ then, $\mathbf{Sp}(X)$ contains at most k isolated degrees and k cones with $k + k' \leq t$.

Lemma If $c_n X \sim tn$ then X contains at most t non recurrent aperiodic configurations.

at most *t* isolated degrees.

Lemma If $c_n X \sim tn$ and X contains k non recurrent aperiodic configurations then X contains at most t - k recurrent aperiodic configurations with different language.

 $\{\mathcal{L}(x) \mid x \text{ aperiodic recurrent}\}$

at most t - k cones. not directly though...

Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

 $x \ge_T \mathcal{L}(x)$

Theorem [Cassaigne 1995] If *x* has linear growth, then $c_{n+1}(x) - c_n(x)$ is bounded by a constant.

There exists *N* and *M* such that for **infinitely many** n > N:

$$c_{n+1}(X) - c_n(X) = M$$

Aperiodic recurrent configurations

There exists N and M such that for **infinitely many** n > N:

 $c_{n+1}(X) - c_n(X) = M$

Some words can be followed by different letters:

There are exactly M choices for all words of length n.

Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

 $x \geq_T \mathcal{L}(x)$

Take *x* as an oracle and output $\mathcal{L}(x)$:

- hardcode *N*,*M*
- scan *x* and find all words of the same length with several choices : *S*

Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

 $x \geq_T \mathcal{L}(x)$

Take x as an oracle and output $\mathcal{L}(x)$:

- hardcode N, M
- scan *x* and find all words of the same length with several choices : *S*
- Find all *n*-letter words:

• We now have $\mathcal{L}_k(x)$ for $k \leq n$.

Aperiodic recurrent configurations

Lemma If *x* is aperiodic recurrent with linear complexity, then

 $x \geq_T \mathcal{L}(x)$

Take x as an oracle and output $\mathcal{L}(x)$:

- hardcode *N*,*M*
- scan *x* and find all words of the same length with several choices : *S*
- Find all *n*-letter words:

• We now have $\mathcal{L}_k(x)$ for $k \leq n$.

Aperiodic recurrent configurations

Lemma If x is aperiodic recurrent with linear complexity, then

 $x \geq_T \mathcal{L}(x)$

Take *x* as an oracle and output $\mathcal{L}(x)$:

- hardcode *N*,*M*
- scan *x* and find all words of the same length with several choices : *S*
- Find all *n*-letter words:

• We now have $\mathcal{L}_k(x)$ for $k \leq n$.
Linear complexity

Last ingredient:

Lemma If *x* is aperiodic recurrent, there exists *y* such that

$$\mathcal{L}(x) = \mathcal{L}(y)$$
 and $\deg_T y = \deg_T \mathcal{L}(x)$

Theorem If $c_n(X) \sim tn$ then, $\mathbf{Sp}(X)$ contains at most k isolated degrees and k cones with $k + k' \leq t$.

Linear complexity

Theorem There exist linear complexity subshifts with k cones and k' isolated degrees for any k, k'.

- k cones: union of Sturmians
- k' isolated degrees:

$$\cdots = - - s_0 \underbrace{- \cdots - s_1}_{f(0)} \underbrace{s_1 \underbrace{- \cdots - s_2}_{f(1)}}_{f(1)} \underbrace{s_2 \underbrace{- \cdots - s_3}_{f(2)}}_{f(2)}$$

•
$$s \in \{0, 1\}^{\mathbb{N}}$$

- f computable and strictly increasing
- same degree as s
- linear growth

Exponential complexity: positive entropy

Exponential complexity (=positive entropy):

 $c_n(X) \sim a^n$

Theorem If h(X) > 0, then **Sp**(X) contains a cone.

Theorem Any spectrum containing a cone can be realized by a subshift with entropy in this cone.

The inbetweeners

Slowest

Fastest

- Constant Only 0.
- Linear Finite number of cones and isolated degrees.
- Exponential Contain a cone.

The inbetweeners

Slowest

Fastest

- Constant Only 0.
- Linear Finite number of cones and isolated degrees.
- Exponential Contain a cone.
- Superlinear ?

Slow superlinear complexity

Theorem For any countable set of degrees, $S = \{\mathbf{d}_1, \mathbf{d}_2, ...\}$ there exists subshifts with **arbitrarily slow superlinear complexity** and **spectrum** $\bigcup C_{\mathbf{d}_i}$.

Proof idea.

Take some increasing unbounded f. Take $(\alpha_k)_{k \in \mathbb{N}}$ and $(m_k)_{k \in \mathbb{N}}$ such that

$$\begin{array}{ll} \alpha_k \to \alpha_0 \\ \deg_T \alpha_k = \mathbf{d}_{\mathbf{k}} \end{array} \quad \text{and} \quad \mathcal{L}_{m_k} \left(S_{\alpha_k} \right) = \mathcal{L}_{m_k} \left(S_{\alpha_0} \right) \quad \text{and} \quad m_{f(n)/2} > n \end{array}$$

Define

$$X = \bigcup_{k} S_{\alpha_{k}} \quad \text{its spectrum is } \mathbf{Sp}(X) = \bigcup \mathbf{d} \in S\mathcal{C}_{\mathbf{d}}$$

it is **closed** since $\alpha_k \rightarrow \alpha_0$, and hence a subshift.

 $c_n(X)$ is bounded by nf(n).

Slow superlinear complexity

Theorem For any countable set of degrees, $S = \{\mathbf{d}_1, \mathbf{d}_2, ...\}$ there exists subshifts with **arbitrarily slow superlinear complexity** and **spectrum** $S \cup \{\mathbf{0}\}$.

Proof idea.

For each degree $\mathbf{d}_i \in S$ include s of degree \mathbf{d}_i :

 $\cdots 0000.10^{2^{1}} 10^{2^{2}} 10^{2^{3}} 1 \cdots 10^{2^{m_{i}}} 10^{2^{m_{i}}+1+s_{1}} 10^{2^{m_{i}}+2+s_{2}} 1 \cdots$

Limit points:

- ···000010000···
- ...000000000...
- $\cdots 000010^{2^1}1\cdots 10^{2^k}1\cdots$

The inbetweeners

Slowest

Fastest

- Constant Only 0.
- Linear Finite number of cones and isolated degrees.
- Exponential Contains a cone.
- Superlinear ~ Anything is possible. Tradeoff
 - Countable unions, any superlinear growth
 - Unions, any superlinear computable growth
- Subexponential ~ Anything is possible
- The rest ~ Anything is possible

