On expansion of numbers in bases 2 and 3

 $\mathsf{Meng}\ \mathsf{WU}$

University of Oulu

Decidability and dynamical systems Amiens - July, 2019

WU Meng (University of Oulu) On expansion of numbers in bases 2 and 3

• We represent numbers using sequences of digits. Decimal (base 10): $0.2016 = \frac{2}{10} + \frac{0}{10^2} + \frac{1}{10^3} + \frac{6}{10^4}$ Binary (base 2): $0.11001 = \frac{1}{2} + \frac{1}{2^2} + \frac{0}{2^3} + \frac{0}{2^4} + \frac{1}{2^5}$

- Problems: What do we know about the digit sequence of a given number (such as π, e, √2, ln(2))? (How the digit sequence of a number is related to its algebraic and analytical properties?)
- \rightarrow very poor understanding!

A famous example

$$\pi = 4 \prod_{n=1}^{\infty} \frac{2n(2n+2)}{(2n+1)^2}$$

= $\frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \frac{4}{13} + \cdots$
= $\sum_{n=1}^{\infty} \frac{1}{16^n} \left(\frac{4}{8n+1} - \frac{2}{8n+4} - \frac{1}{8n+5} - \frac{1}{8n+6} \right)$
... many other formulas

Question: What do we know about the digit sequence of π ?

- 2

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

What do we know about the digit sequence of π ?

 $\pi = 3. \ 1415926535897932384626433832$ 795028841971693993751058209749 445923078164062862089986280348 253421170679821480865132823066 4709384460955058223172535940 · · ·

Numerical computations show that it behaves "randomly". But we don't even know if the digit 0 appears infinitely often!

 \rightarrow Randomness?

Randomness \rightarrow Complexity of the digit sequence.

• For $x \in [0,1]$, we denote the orbit of x under imes 10 by

 $\mathcal{O}_{10}(x) = \{10^k x \mod 1 : k \in \mathbb{N}\}.$

 $C_{10}(x) := \dim_{\mathrm{H}} \overline{\mathcal{O}_{10}(x)} \to \text{complexity of } x \text{ in base 10.}$

- Easy fact: if $x \in \mathbb{Q} \Rightarrow C_m(x) = 0$; how about $x \notin \mathbb{Q}$?
- We don't understand this!

御 と く 思 と く 思 と …

Randomness \rightarrow Complexity of the digit sequence.

• For $x \in [0,1]$, we denote the orbit of x under imes 10 by

 $\mathcal{O}_{10}(x) = \{10^k x \mod 1 : k \in \mathbb{N}\}.$

 $C_{10}(x) := \dim_{\mathrm{H}} \overline{\mathcal{O}_{10}(x)} \to \text{complexity of } x \text{ in base 10.}$

- Easy fact: if $x \in \mathbb{Q} \Rightarrow C_m(x) = 0$; how about $x \notin \mathbb{Q}$?
- We don't understand this!
- So let's try something harder! How about expansion of x in two bases?

(聞) 《注) 《注) 三

Randomness \rightarrow Complexity of the digit sequence.

• For $x \in [0,1]$, we denote the orbit of x under imes 10 by

 $\mathcal{O}_{10}(x) = \{10^k x \mod 1 : k \in \mathbb{N}\}.$

 $C_{10}(x) := \dim_{\mathrm{H}} \overline{\mathcal{O}_{10}(x)} \to \text{complexity of } x \text{ in base 10.}$

- Easy fact: if $x \in \mathbb{Q} \Rightarrow C_m(x) = 0$; how about $x \notin \mathbb{Q}$?
- We don't understand this!
- So let's try something harder! How about expansion of x in two bases?
- If $\log p / \log q \in \mathbb{Q} \Rightarrow C_p(x) = C_q(x)$. ex: $C_{10}(x) = C_{100}(x)$.
- And if $\log p / \log q \notin \mathbb{Q}$?

▲圖 ▶ ▲ 語 ▶ ▲ 語 ▶ … 酒

Randomness \rightarrow Complexity of the digit sequence.

• For $x \in [0,1]$, we denote the orbit of x under imes 10 by

 $\mathcal{O}_{10}(x) = \{10^k x \mod 1 : k \in \mathbb{N}\}.$

 $C_{10}(x) := \dim_{\mathrm{H}} \overline{\mathcal{O}_{10}(x)} \to \text{complexity of } x \text{ in base 10.}$

- Easy fact: if $x \in \mathbb{Q} \Rightarrow C_m(x) = 0$; how about $x \notin \mathbb{Q}$?
- We don't understand this!
- So let's try something harder! How about expansion of x in two bases?
- If $\log p / \log q \in \mathbb{Q} \Rightarrow C_p(x) = C_q(x)$. ex: $C_{10}(x) = C_{100}(x)$.
- And if $\log p / \log q \notin \mathbb{Q}$?
- Furstenberg: if log p / log q ∉ Q, then O_p(x) and O_q(x) can not both be "simple"!

▲御▶ ▲ 周▶ ▲ 周▶ 二 国

Conjecture 1 (Furstenberg, 1969) If $\log p / \log q \notin \mathbb{Q}$, then for all $x \in [0, 1] \setminus \mathbb{Q}$, we have $\dim_{\mathrm{H}} \overline{\mathcal{O}_p(x)} + \dim_{\mathrm{H}} \overline{\mathcal{O}_q(x)} \ge 1.$

 \Rightarrow Low complexity in one base implies high complexity in another base.

▶ 《夏▶ 《夏▶

Conjecture 1 (Furstenberg, 1969) If $\log p / \log q \notin \mathbb{Q}$, then for all $x \in [0, 1] \setminus \mathbb{Q}$, we have

 $\dim_{\mathrm{H}} \overline{\mathcal{O}_p(x)} + \dim_{\mathrm{H}} \overline{\mathcal{O}_q(x)} \geq 1.$

 \Rightarrow Low complexity in one base implies high complexity in another base.

• Applying Conjecture 1 to $\sqrt{2}, e, \pi, \ln 2, \ldots$

 $\textit{Example}: \quad \dim_{\mathrm{H}} \overline{\mathcal{O}_{2}(\pi)} + \dim_{\mathrm{H}} \overline{\mathcal{O}_{10}(\pi)} \geq 1 \quad !$

御 と く 思 と く 思 と …

- The conjecture goes beyond this: instead of *p*-adic expansion → continued fraction.
- $\bullet\,$ arithmetical independence $\rightarrow\,$ geometrical independence.

• • = • • = •

- The conjecture goes beyond this: instead of *p*-adic expansion → continued fraction.
- arithmetical independence \rightarrow geometrical independence.

Problem: For $p \ge 2$ and all $x \in [0, 1] \setminus \mathbb{Q}$, we have

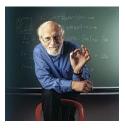
 $\dim_{\mathrm{H}} \overline{\mathcal{O}_{\mathcal{G}}(x)} + \dim_{\mathrm{H}} \overline{\mathcal{O}_{\mathcal{P}}(x)} \geq 1.$

Here $\mathcal{O}_G(x)$ is the orbit of x under the Gauss map.

• Example: for $x = \sqrt{2}$, the $\mathcal{O}_G(x)$ is periodic, so dim_H $\overline{\mathcal{O}_G(x)} = 0$,

Problem
$$\Rightarrow \dim_{\mathrm{H}} \mathcal{O}_{p}(\sqrt{2}) = 1!$$

H. Furstenberg: a great mathematician with a remarkable originality.



- Ergodic theory and dynamical systems;
- Applying ergodic theory to combinatorics and number theory; (Szemerédi theorem, Green-Tao's work)
- ×2, ×3-rigidity problem in ergodic theory; (Lindenstrauss' work)
- Disjointness of dynamical systems
- Products of random matrices, non-commutative ergodic theory;
- Unique ergodicity of horocycle flow, toral maps, ...
- Analysis on symmetric spaces and homogeneous flows ...
- Wolf prize (2006).

Conjecture 1 (Furstenberg, 1969)

If $\log p / \log q \notin \mathbb{Q}$, then for all $x \in [0,1] \setminus \mathbb{Q}$, we have

 $\dim_{\mathrm{H}} \overline{\mathcal{O}_{p}(x)} + \dim_{\mathrm{H}} \overline{\mathcal{O}_{q}(x)} \geq 1.$

Conjecture 1' (Furstenberg)

Suppose log $p/\log q \notin \mathbb{Q}$. There exists a set $E \subset [0,1]$ with dim_H E = 0 such that for all $x \in [0,1] \setminus E$, we have

$$\dim_{\mathrm{H}} \overline{\mathcal{O}_{p}(x)} + \dim_{\mathrm{H}} \overline{\mathcal{O}_{q}(x)} \geq 1.$$

Note that we always have $\mathbb{Q} \subset E$. Object.

From Conjecture 1 to intersections of Cantor sets.

- Recall $\mathcal{O}_p(x) = \{p^n x \mod 1 : n \in \mathbb{N}\}.$
- Let $A = \overline{\mathcal{O}_2(x)}$ and $B = \overline{\mathcal{O}_3(x)}$.
- Suppose dim_H $A + \dim_H B < 1$, then Conjecture $1 \Rightarrow x \in \mathbb{Q}$.
- And more generally, we have $A \cap B \subset \mathbb{Q}$.
- \rightarrow the intersection $A \cap B$ is small.
- \rightarrow reason?
- \rightarrow not individual phenomena.
- \rightarrow more general setting.

Problem of Furstenberg (1969): intersections of Cantor sets

- Dynamical system (X, f): X compact metric space, $f : X \to X$.
- Principal example : X = [0, 1], $f : x \mapsto 2x \mod 1$.
- *f*-invariant sets:

 $\{A \subset X : A \text{ compact }, f(A) \subset A\}.$

 \rightarrow display dynamical properties of f.

▶ ▲ 開 ▶ ▲ 関 ▶

Problem of Furstenberg (1969): intersections of Cantor sets

- Dynamical system (X, f): X compact metric space, $f : X \to X$.
- Principal example : X = [0, 1], $f : x \mapsto 2x \mod 1$.
- *f*-invariant sets:

 $\{A \subset X : A \text{ compact }, f(A) \subset A\}.$

 \rightarrow display dynamical properties of f.

- (X, f), (X, g): compare the two systems → compare their invariant sets.
- Particularly: when f et g are "independent" → few common dynamical structures → the intersections of their invariant sets should be "as small as possible".
- independence: arithmetical or geometrical
- Ex: $f : x \to 2x \mod 1$, $f : x \to 3x \mod 1$ $(\log 2/\log 3 \notin \mathbb{Q} \to \text{multiplicatively independent})$

▲圖 ▶ ▲ 恵 ▶ ▲ 恵 ▶ 二 恵

Transversality of dynamical systems (Furstenberg 1969)

- (X, f), (X, g); dim \rightarrow a dimension function (ex. dim_H)
- Furstenberg: f et g are called transverse if for all A = f-invariant et B = g-invariant, we have

 $\dim A \cap B \le \max\{0, \dim A + \dim B - \dim X\}$

 Furstenberg: for p, q ∈ N≥2 which are multiplicatively independent, the dynamics ×p and ×q are transverse.

@▶ ▲周▶ ▲周▶

Transversality of dynamical systems (Furstenberg 1969)

- (X, f), (X, g); dim \rightarrow a dimension function (ex. dim_H)
- Furstenberg: f et g are called transverse if for all A = f-invariant et B = g-invariant, we have

 $\dim A \cap B \leq \max\{0, \dim A + \dim B - \dim X\}$

 Furstenberg: for p, q ∈ N≥2 which are multiplicatively independent, the dynamics ×p and ×q are transverse.

Conjecture 2 (Furstenberg 1969)

Let $p, q \in \mathbb{N}_{\geq 2}$ with $\log p / \log q \notin \mathbb{Q}$. If $A \subset [0, 1]$ is $\times p$ -invariant and $B \subset [0, 1]$ is $\times q$ -invariant, then for all $u, v \in \mathbb{R}$, we have

 $\dim_{\mathrm{H}}(uA+v)\cap B\leq \max\{0,\dim_{\mathrm{H}}A+\dim_{\mathrm{H}}B-1\}.$

▲圖 ▶ ▲ 周 ▶ ▲ 周 ▶

Transversality of dynamical systems (Furstenberg 1969)

- (X, f), (X, g); dim \rightarrow a dimension function (ex. dim_H)
- Furstenberg: f et g are called transverse if for all A = f-invariant et B = g-invariant, we have

 $\dim A \cap B \le \max\{0, \dim A + \dim B - \dim X\}$

 Furstenberg: for p, q ∈ N≥2 which are multiplicatively independent, the dynamics ×p and ×q are transverse.

Conjecture 2 (Furstenberg 1969)

Let $p, q \in \mathbb{N}_{\geq 2}$ with $\log p / \log q \notin \mathbb{Q}$. If $A \subset [0, 1]$ is $\times p$ -invariant and $B \subset [0, 1]$ is $\times q$ -invariant, then for all $u, v \in \mathbb{R}$, we have

 $\dim_{\mathrm{H}}(uA+v)\cap B\leq \max\{0,\dim_{\mathrm{H}}A+\dim_{\mathrm{H}}B-1\}.$

Object of this talk.

@▶ ▲周▶ ▲周▶

The intersection conjecture of Furstenberg is true.

Theorem (W, Ann. Math. 2019)

Let $p, q \in \mathbb{N}_{\geq 2}$ with $\log p / \log q \notin \mathbb{Q}$. If A = p-invariant and B = q-invariant, then for all $u, v \in \mathbb{R}$,

 $\overline{\dim}_{\mathrm{B}}(f(A) \cap B) \leq \max\{0, \dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B - 1\}$

for non-degenerated differentiable $f : \mathbb{R} \to \mathbb{R}$.

• • = • • =

The intersection conjecture of Furstenberg is true.

Theorem (W, Ann. Math. 2019)

Let $p, q \in \mathbb{N}_{\geq 2}$ with $\log p / \log q \notin \mathbb{Q}$. If A = p-invariant and B = q-invariant, then for all $u, v \in \mathbb{R}$,

 $\overline{\dim}_{\mathrm{B}}(f(A) \cap B) \leq \max\{0, \dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B - 1\}$

for non-degenerated differentiable $f : \mathbb{R} \to \mathbb{R}$.

Remark: The intersection conjecture of Furstenberg has been simultaneously and independently proved by **P. Shmerkin** (Ann. Math. 2019) using completely different (additive combinatorial) methods.

@▶ ▲周▶ ▲周▶

Historic paper of Furstenberg (1967):

"Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation"

- Disjointness of dynamical systems.
- The celebrated $\times 2, \times 3$ -rigidity result: if $A \subset [0, 1]$ is simultaneously $\times 2$ and $\times 3$ -invariant and $\sharp A = \infty$, then A = [0, 1].
- \rightarrow if $x \in [0,1] \setminus \mathbb{Q}$, then $\{2^n 3^m x \mod 1\}_{n,m \in \mathbb{N}}$ is dense in [0,1].
- The famous ×2, ×3 conjecture: if μ is a non-atomic measure, ergodic and simultaneously ×2 and ×3-invariant, then μ = L.
 (Partial solution: Rudolph; influenced: Einsiedler-Katok-Lindenstrauss work)

Problem 1967 \rightarrow "intersections of invariant measures"; Problem 1969 \rightarrow "intersections des invariant sets".

@▶ ▲周▶ ▲周▶

• Cobham's theorem/theory (in 1960's)

-2

▲ロト ▲圖ト ▲園ト ▲園ト

- Cobham's theorem/theory (in 1960's)
- Fabien, ...

æ

・ロト ・聞ト ・思ト ・思ト

Known results about Conjecture 2 (intersection Conjecture)

• Observation: for $A, B \subset \mathbb{R}$, $u, v \in \mathbb{R}$, we have

$$(uA + v) \cap B \xrightarrow{affine \ copy} (A \times B) \cap \ell_{u,v},$$

where $\ell_{u,v} = \{(x, y) : y = ux + v\}.$

Classical result on sections of fractals:

Theorem (classical)

Let $E \subset \mathbb{R}^2$ be a Borel set. Then for each $u \in \mathbb{R}$,

 $\dim_{\mathrm{H}}(E \cap \ell_{u,v}) \leq \max\{0, \dim_{\mathrm{H}} E - 1\} \text{ for } \mathcal{L}\text{-almost every } v.$

• Consequence: if $A = \times p$ -inv and $B = \times q$ -inv, then for each u

 $\dim_{\mathrm{H}}(uA + v) \cap B \leq \max\{0, \dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B - 1\} \text{ for } \mathcal{L}\text{-a.e. } v$

Proof: $E = A \times B$; dim_H $A \times B = \dim_H A + \dim_H B$.

• Furstenberg is true for "almost all" sections.

@▶ 《注》 《注》

Partial results concerning all sections: Furstenberg

Theorem (Furstenberg, 1969)

Under the hypothesis of Conjecture 2, if there exist u_0, v_0 such that $\overline{\dim}_B(u_0A + v_0) \cap B = \gamma > 0$, then for \mathcal{L} -a.e. $u, \exists v$ such that

 $\dim_{\mathrm{H}}(uA+v)\cap B\geq \gamma.$

As a (simple) corollary, for all u, v, we have

$$\overline{\mathsf{dim}}_{\mathrm{B}}(\mathit{uA}+\mathit{v})\cap B\leq\mathsf{max}\{0,\mathsf{dim}_{\mathrm{H}}\,\mathit{A}+\mathsf{dim}_{\mathrm{H}}\,B-rac{1}{2}\}.$$

Method (Furstenberg): CP-process/CP-chain.

Consequence: Conjecture 2 is true under the condition

$$\dim_{\mathrm{H}} \mathsf{A} + \dim_{\mathrm{H}} \mathsf{B} < rac{1}{2}.$$

Recent results (Feng-Huang-Rao, 2013)

- Feng-Huang-Rao: Affine embeddings of self-similar sets.
- A = p-Cantor set if $\exists D \subset \{0, \cdots, p-1\}$ such that

$$A=\{\sum_{k\geq 1}p^{-k}x_k:x_k\in D\}.$$

Remark: A is a self-similar and $\times p$ -invariant set.

Theorem (Feng-Huang-Rao, JMPA 2013) Let $p, q \in \mathbb{N}_{\geq 2}$ with $\log p / \log q \notin \mathbb{Q}$. If A = p-Cantor and B = q-Cantor, then there is no affine embedding between A and B.

As a consequence, $\exists \delta = \delta(A, B) > 0$ (non-effective) such that

 $\dim_{\mathrm{H}}(uA + v) \cap B \leq \min\{\dim_{\mathrm{H}} A, \dim_{\mathrm{H}} B\} - \delta.$

Remark: for the Conjecture of Furstenberg, one expects

 $\delta = 1 - \max\{\dim_{\mathrm{H}} A, \dim_{\mathrm{H}} B\}.$

御 と * 油 と * 油 と

Related recent results

- Adamczewski-Bell's results on k-automatic and l-automatic fractals (TAMS 2011);
- Boigelot, Brusten, Bruyère, Jodogne, Leroux, Wolper: results on *k*-recognizable and *l*-recognizable fractals
- Charlier-Leroy-Rigo's (generalized) results to graph directed IFSs (Adv. Math. 2015);
- Chan-Hare (PAMS 2015);
- Feng-Wang (Adv. Math. 2009), ...

The intersection conjecture of Furstenberg is true.

Theorem (W)

Let $p, q \in \mathbb{N}_{\geq 2}$ with $\log p / \log q \notin \mathbb{Q}$. If A = p-invariant and B = q-invariant, then for all $u, v \in \mathbb{R}$,

 $\overline{\dim}_{\mathrm{B}}(f(A) \cap B) \leq \max\{0, \dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B - 1\}$

for non-degenerated differentiable $f : \mathbb{R} \to \mathbb{R}$.

We have a more general version of the theorem on the intersections of incommensurable homogeneous self-similar sets. (\rightarrow arbitrary contraction ratios.)

The intersection conjecture of Furstenberg is true.

Our methods also allow us to prove the following

▲圖▶ ▲ 周▶ ▲ 周▶

The intersection conjecture of Furstenberg is true. Our methods also allow us to prove the followingp:

- Given $\beta > 1$, T_{β} : β -transformation.
- For $\log \alpha / \log \beta \notin \mathbb{Q}$, if A is T_{α} -invariant compact and B is T_{β} -invariant compact, then

 $\dim_{\mathrm{B}} A \cap (uB + v) \leq \max\{0, \dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B - 1\}.$

- Given k, ℓ with $\log k / \log \ell \notin \mathbb{Q}$, A = k-automatic, $B = \ell$ -automatic.
- Non-compact case: A is the set of generic points of a ×2-invariant ergodic measure, B is the set of generic points of a ×3-invariant ergodic measure.

@▶ ▲ 唐▶ ▲ 唐▶ →

The intersection conjecture of Furstenberg is true. Our methods also allow us to prove the followingp:

• Given $\beta > 1$, T_{β} : β -transformation.

۲

• For $\log \alpha / \log \beta \notin \mathbb{Q}$, if A is T_{α} -invariant compact and B is T_{β} -invariant compact, then

 $\dim_{\mathrm{B}} A \cap (uB + v) \leq \max\{0, \dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B - 1\}.$

- Given k, ℓ with $\log k / \log \ell \notin \mathbb{Q}$, A = k-automatic, $B = \ell$ -automatic.
- Non-compact case: A is the set of generic points of a ×2-invariant ergodic measure, B is the set of generic points of a ×3-invariant ergodic measure. Another proof of Rudolph's theorem.

$$A = \{x \in \mathbb{T} : \frac{1}{n} \sum_{k=1}^{n} f(T_2^k x) \to a\}$$
$$B = \{x \in \mathbb{T} : \frac{1}{n} \sum_{k=1}^{n} g(T_3^k x) \to b\}$$

Optimality of Furstenberg's conjecture.

Given A = ×2-inv and B = ×3-inv, for any u ∈ ℝ \ {0}, there are many v such that dim_H A ∩ (uB + v) = max(0, dim_H A + dim_H B − 1).

"Theorem" (W, last week 2019)

Given A, B as above, for any $u \in \mathbb{R} \setminus \{0\}$, there is a set $V \subset \mathbb{R}$ with $\dim_{\mathrm{H}} V = 1$ such that for $v \in V$ we have

 $\dim_{\mathrm{H}} A \cap (uB + v) = \max(0, \dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B - 1).$

The problem we began with ...

Corollary (W)

Suppose $\log p / \log q \notin \mathbb{Q}$. There exists a set $E \subset [0,1]$ with $\dim_{\mathrm{H}} E = 0$ $(\dim_{\mathrm{P}} E = 0)$ such that for all $x \in [0,1] \setminus E$, we have

 $\dim_{\mathrm{H}} \overline{\mathcal{O}_{p}(x)} + \dim_{\mathrm{H}} \overline{\mathcal{O}_{q}(x)} \geq 1.$

The problem we began with ...

Corollary (W)

Suppose $\log p / \log q \notin \mathbb{Q}$. There exists a set $E \subset [0,1]$ with $\dim_{\mathrm{H}} E = 0$ $(\dim_{\mathrm{P}} E = 0)$ such that for all $x \in [0,1] \setminus E$, we have

 $\dim_{\mathrm{H}} \overline{\mathcal{O}_{p}(x)} + \dim_{\mathrm{H}} \overline{\mathcal{O}_{q}(x)} \geq 1.$

- Bugeaud-Kim (Ann. Inst. Fourier 2017): for x ∉ Q, the expansions of x in base 2 and in base 3 cannot be both Sturmian.
- Adamczewski-Faverjon Conjecture (2018): let $\log k / \log \ell \notin \mathbb{Q}$, prove that a real number is automatic in both bases k and ℓ if and only if it is a rational number.
- Many open questions!!!

Thank you!

-2

▲ロト ▲圖ト ▲園ト ▲園ト