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We represent numbers using sequences of digits.
Decimal (base 10): 0.2016 = 2

10 + 0
102

+ 1
103

+ 6
104

Binary (base 2): 0.11001 = 1
2 + 1

22
+ 0

23
+ 0

24
+ 1

25

Problems: What do we know about the digit sequence of a given
number (such as π, e,

√
2, ln(2))?

(How the digit sequence of a number is related to its algebraic and

analytical properties?)

→ very poor understanding!
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A famous example

π = 4
∞∏

n=1

2n(2n + 2)

(2n + 1)2

=
4

1
− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+

4

13
+ · · ·

=
∞∑

n=1

1

16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)
... many other formulas

Question: What do we know about the digit sequence of π?
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What do we know about the digit sequence of π?

π =3. 1415926535897932384626433832

795028841971693993751058209749

445923078164062862089986280348

253421170679821480865132823066

4709384460955058223172535940 · · ·

Numerical computations show that it behaves “randomly”.
But we don’t even know if the digit 0 appears infinitely often!

→ Randomness?
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Randomness of digit sequence

Randomness → Complexity of the digit sequence.

For x ∈ [0, 1], we denote the orbit of x under ×10 by

O10(x) = {10kx mod 1 : k ∈ N}.

C10(x) := dimHO10(x)→ complexity of x in base 10.

Easy fact: if x ∈ Q⇒ Cm(x) = 0; how about x /∈ Q?

We don’t understand this!

So let’s try something harder! How about expansion of x in two
bases?

If log p/ log q ∈ Q⇒ Cp(x) = Cq(x). ex: C10(x) = C100(x).

And if log p/ log q /∈ Q?

Furstenberg: if log p/ log q /∈ Q, then Op(x) and Oq(x) can not
both be “simple”!
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Conjecture 1 (Furstenberg, 1969)

If log p/ log q /∈ Q, then for all x ∈ [0, 1] \Q, we have

dimHOp(x) + dimHOq(x) ≥ 1.

⇒ Low complexity in one base implies high complexity in another base.

Applying Conjecture 1 to
√

2, e, π, ln 2, . . .

Example : dimHO2(π) + dimHO10(π) ≥ 1 !
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The conjecture goes beyond this:
instead of p-adic expansion → continued fraction.

arithmetical independence → geometrical independence.

Problem: For p ≥ 2 and all x ∈ [0, 1] \Q, we have

dimHOG (x) + dimHOp(x) ≥ 1.

Here OG (x) is the orbit of x under the Gauss map.

Example: for x =
√

2, the OG (x) is periodic, so dimHOG (x) = 0,

Problem⇒ dimHOp(
√

2) = 1!
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H. Furstenberg: a great mathematician with a remarkable
originality.

Ergodic theory and dynamical systems;
Applying ergodic theory to combinatorics and number theory;
(Szemerédi theorem, Green-Tao’s work)
×2,×3-rigidity problem in ergodic theory; (Lindenstrauss’ work)
Disjointness of dynamical systems
Products of random matrices, non-commutative ergodic theory;
Unique ergodicity of horocycle flow, toral maps, ...
Analysis on symmetric spaces and homogeneous flows ...
Wolf prize (2006).
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Conjecture 1 (Furstenberg, 1969)

If log p/ log q /∈ Q, then for all x ∈ [0, 1] \Q, we have

dimHOp(x) + dimHOq(x) ≥ 1.

Conjecture 1’ (Furstenberg)

Suppose log p/ log q /∈ Q. There exists a set E ⊂ [0, 1] with dimH E = 0
such that for all x ∈ [0, 1] \ E , we have

dimHOp(x) + dimHOq(x) ≥ 1.

Note that we always have Q ⊂ E .
Object.
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From Conjecture 1 to intersections of Cantor sets.

Recall Op(x) = {pnx mod 1 : n ∈ N}.
Let A = O2(x) and B = O3(x).

Suppose dimH A + dimH B < 1, then Conjecture 1 ⇒ x ∈ Q.
And more generally, we have A ∩ B ⊂ Q.

→ the intersection A ∩ B is small.

→ reason?

→ not individual phenomena.

→ more general setting.
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Problem of Furstenberg (1969): intersections of Cantor sets

Dynamical system (X , f ): X compact metric space, f : X → X .

Principal example : X = [0, 1], f : x 7→ 2x mod 1.

f -invariant sets:

{A ⊂ X : A compact , f (A) ⊂ A} .

→ display dynamical properties of f .

(X , f ), (X , g): compare the two systems → compare their invariant
sets.

Particularly: when f et g are “independent” → few common
dynamical structures → the intersections of their invariant sets should
be “as small as possible”.

independence: arithmetical or geometrical

Ex: f : x → 2x mod 1, f : x → 3x mod 1
(log 2/ log 3 /∈ Q → multiplicatively independent)
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Transversality of dynamical systems (Furstenberg 1969)

(X , f ), (X , g); dim → a dimension function (ex. dimH)

Furstenberg: f et g are called transverse if for all A = f -invariant et
B = g -invariant, we have

dimA ∩ B ≤ max{0, dimA + dimB − dimX}

Furstenberg: for p, q ∈ N≥2 which are multiplicatively independent,
the dynamics ×p and ×q are transverse.

Conjecture 2 (Furstenberg 1969)

Let p, q ∈ N≥2 with log p/ log q /∈ Q. If A ⊂ [0, 1] is ×p-invariant and
B ⊂ [0, 1] is ×q-invariant, then for all u, v ∈ R, we have

dimH(uA + v) ∩ B ≤ max{0, dimH A + dimH B − 1}.

Object of this talk.
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The intersection conjecture of Furstenberg is true.

Theorem (W, Ann. Math. 2019)

Let p, q ∈ N≥2 with log p/ log q /∈ Q. If A = p-invariant and B =
q-invariant, then for all u, v ∈ R,

dimB(f (A) ∩ B) ≤ max{0, dimH A + dimH B − 1}

for non-degenerated differentiable f : R→ R.

Remark: The intersection conjecture of Furstenberg has been
simultaneously and independently proved by P. Shmerkin (Ann. Math.
2019) using completely different (additive combinatorial) methods.
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Historic paper of Furstenberg (1967):
”Disjointness in ergodic theory, minimal sets, and a problem in Diophantine

approximation”

Disjointness of dynamical systems.

The celebrated ×2,×3-rigidity result: if A ⊂ [0, 1] is simultaneously
×2 and ×3-invariant and ]A =∞, then A = [0, 1].

→ if x ∈ [0, 1] \Q, then {2n3mx mod 1}n,m∈N is dense in [0, 1].

The famous ×2,×3 conjecture: if µ is a non-atomic measure, ergodic
and simultaneously ×2 and ×3-invariant, then µ = L.
(Partial solution: Rudolph; influenced: Einsiedler-Katok-Lindenstrauss work)

Problem 1967 → “intersections of invariant measures”;
Problem 1969 → “intersections des invariant sets”.
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Cobham’s theorem/theory (in 1960’s)

Fabien, ...
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Known results about Conjecture 2 (intersection Conjecture)

Observation: for A,B ⊂ R, u, v ∈ R, we have

(uA + v) ∩ B
affine copy−−−−−−→ (A× B) ∩ `u,v ,

where `u,v = {(x , y) : y = ux + v}.
Classical result on sections of fractals:

Theorem (classical)

Let E ⊂ R2 be a Borel set. Then for each u ∈ R,

dimH(E ∩ `u,v ) ≤ max{0, dimH E − 1} for L-almost every v .

Consequence: if A = ×p-inv and B = ×q-inv, then for each u

dimH(uA + v) ∩ B ≤ max{0, dimH A + dimH B − 1} for L-a.e. v

Proof: E = A× B; dimH A× B = dimH A + dimH B.

Furstenberg is true for “almost all” sections.
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Partial results concerning all sections: Furstenberg

Theorem (Furstenberg, 1969)

Under the hypothesis of Conjecture 2, if there exist u0, v0 such that
dimB(u0A + v0) ∩ B = γ > 0, then for L-a.e. u, ∃ v such that

dimH(uA + v) ∩ B ≥ γ.

As a (simple) corollary, for all u, v , we have

dimB(uA + v) ∩ B ≤ max{0, dimH A + dimH B − 1

2
}.

Method (Furstenberg): CP-process/CP-chain.

Consequence: Conjecture 2 is true under the condition

dimH A + dimH B <
1

2
.
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Recent results (Feng-Huang-Rao, 2013)

Feng-Huang-Rao: Affine embeddings of self-similar sets.

A = p-Cantor set if ∃D ⊂ {0, · · · , p − 1} such that

A = {
∑
k≥1

p−kxk : xk ∈ D}.

Remark: A is a self-similar and ×p-invariant set.

Theorem (Feng-Huang-Rao, JMPA 2013)

Let p, q ∈ N≥2 with log p/ log q /∈ Q. If A = p-Cantor and B = q-Cantor,
then there is no affine embedding between A and B.

As a consequence, ∃ δ = δ(A,B) > 0 (non-effective) such that

dimH(uA + v) ∩ B ≤ min{dimH A, dimH B} − δ.

Remark: for the Conjecture of Furstenberg, one expects

δ = 1−max{dimH A, dimH B}.
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Related recent results

Adamczewski-Bell’s results on k-automatic and `-automatic fractals
(TAMS 2011);

Boigelot, Brusten, Bruyère, Jodogne, Leroux, Wolper: results on
k-recognizable and `-recognizable fractals

Charlier-Leroy-Rigo’s (generalized) results to graph directed IFSs
(Adv. Math. 2015);

Chan-Hare (PAMS 2015);

Feng-Wang (Adv. Math. 2009), ...
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The intersection conjecture of Furstenberg is true.

Theorem (W)

Let p, q ∈ N≥2 with log p/ log q /∈ Q. If A = p-invariant and B =
q-invariant, then for all u, v ∈ R,

dimB(f (A) ∩ B) ≤ max{0, dimH A + dimH B − 1}

for non-degenerated differentiable f : R→ R.

We have a more general version of the theorem on the intersections of
incommensurable homogeneous self-similar sets. (→ arbitrary contraction
ratios.)
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The intersection conjecture of Furstenberg is true.
Our methods also allow us to prove the following

p:

Given β > 1, Tβ: β-transformation.

For logα/ log β /∈ Q, if A is Tα-invariant compact and B is
Tβ-invariant compact, then

dimB A ∩ (uB + v) ≤ max{0, dimH A + dimH B − 1}.

Given k, ` with log k/ log ` /∈ Q, A=k-automatic, B=`-automatic.

Non-compact case: A is the set of generic points of a ×2-invariant
ergodic measure, B is the set of generic points of a ×3-invariant
ergodic measure. Another proof of Rudolph’s theorem.

A = {x ∈ T :
1

n

n∑
k=1

f (T k
2 x)→ a}

B = {x ∈ T :
1

n

n∑
k=1

g(T k
3 x)→ b}
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Optimality of Furstenberg’s conjecture.

Given A = ×2-inv and B = ×3-inv, for any u ∈ R \ {0}, there are
many v such that dimH A∩ (uB + v) = max(0, dimH A+ dimH B − 1).

“Theorem” (W, last week 2019)

Given A,B as above, for any u ∈ R \ {0}, there is a set V ⊂ R with
dimH V = 1 such that for v ∈ V we have

dimH A ∩ (uB + v) = max(0, dimH A + dimH B − 1).
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The problem we began with ...

Corollary (W)

Suppose log p/ log q /∈ Q. There exists a set E ⊂ [0, 1] with dimH E = 0
(dimP E = 0) such that for all x ∈ [0, 1] \ E , we have

dimHOp(x) + dimHOq(x) ≥ 1.

Bugeaud-Kim (Ann. Inst. Fourier 2017): for x /∈ Q, the expansions of
x in base 2 and in base 3 cannot be both Sturmian.

Adamczewski-Faverjon Conjecture (2018): let log k/ log ` /∈ Q, prove
that a real number is automatic in both bases k and ` if and only if it
is a rational number.

Many open questions!!!
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Thank you!
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