Aperiodic configurations in \mathbb{Z}^2 -subshifts

Anael Grandjean, Benjamin Hellouin, Pascal Vanier

LRI, Université Paris Sud – Paris Saclay

Dyadisc3, LAMFA, Amiens

July 3, 2019

Part I

Subshift, domino, periodicity

Subshifts

- \mathcal{A} a finite set called **alphabet** ({ \Box , \blacksquare });
- \mathbb{Z}^d a *d*-dimensional grid;
- \mathcal{A}^* the set of (finite) **patterns**;
- $\mathcal{A}^{\mathbb{Z}^d}$ the set of (infinite) **configurations**.

Subshifts

- \mathcal{A} a finite set called **alphabet** ({ \Box , \blacksquare });
- \mathbb{Z}^d a *d*-dimensional grid;
- \mathcal{A}^* the set of (finite) **patterns**;
- $\mathcal{A}^{\mathbb{Z}^d}$ the set of (infinite) **configurations**.

Subshift: the set of configurations that do not contain any pattern from a given set of **forbidden patterns** $\mathcal{F} \subset \mathcal{A}^*$.

of finite type if \mathcal{F} can be chosen finite.

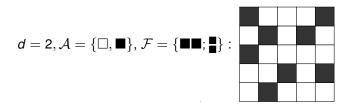
A pattern is **locally admissible** if it does not contain any forbidden pattern.

Domino problem

Examples $d = 1, \mathcal{A} = \{\Box, \blacksquare\}, \mathcal{F} = \{\blacksquare\blacksquare\}$:

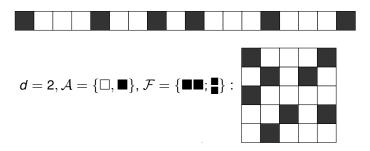
Domino problem

Examples $d = 1, \mathcal{A} = \{\Box, \blacksquare\}, \mathcal{F} = \{\blacksquare\blacksquare\}$:



Domino problem

Examples $d = 1, \mathcal{A} = \{\Box, \blacksquare\}, \mathcal{F} = \{\blacksquare\blacksquare\}$:



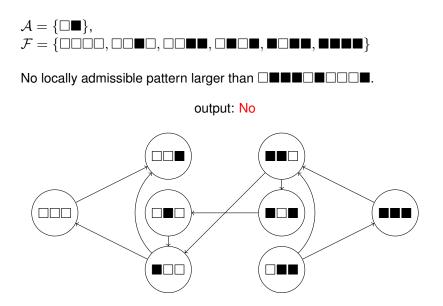
Domino problem

Input A subshift of finite type (a finite alphabet & finite set of forbidden patterns)

Output Does it contain a configuration?

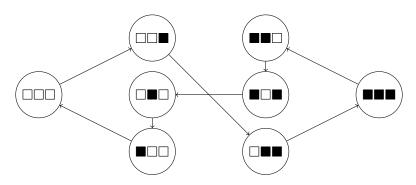
No locally admissible pattern larger than

output: No



A periodic configuration:

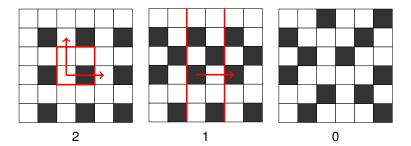
output: Yes



Periodicity

A configuration *x* has period $\vec{v} \in \mathbb{Z}^2$ if, for all coordinate $\vec{i} \in \mathbb{Z}^2$,

$$x_{\vec{i}+\vec{v}}=x_{\vec{i}}.$$



A configuration is *k*-**periodic** if it has *k* independent periods (and no more).

that is, the set of its periods has dimension k. aperiodic := 0-periodic

Domino problem

Input A subshift of finite type; Output Does it contain a configuration?

Domino problem

Input A subshift of finite type; Output Does it contain a configuration?

Algorithm sketch (Wang 1961)

For *n* ranging from 1 to ∞ :

- Enumerate all locally admissible patterns $n \times n$
- If there is none: output No
- If there is a 2-periodic one: output Yes.
- Otherwise: continue.

Algorithm sketch (Wang 1961)

For *n* ranging from 1 to ∞ :

- Enumerate all locally admissible patterns $n \times n$
- If there is none: output No
- If there is a 2-periodic one: output Yes.
- Otherwise: continue.

Negative part

If a subshift is empty, then it admits no locally admissible $n \times n$ pattern for some *n*.

(the problem is **co-semi-decidable**).

Algorithm sketch (Wang 1961)

For *n* ranging from 1 to ∞ :

- Enumerate all locally admissible patterns $n \times n$
- If there is none: output No
- If there is a 2-periodic one: output Yes.
- Otherwise: continue.

Negative part

If a subshift is empty, then it admits no locally admissible $n \times n$ pattern for some *n*.

(the problem is **co-semi-decidable**).

Positive part

Does all nonempty subshifts have a 2-periodic configuration ?

Positive part

Proposition

If a subshift contains a 1-periodic configuration, then it contains a 2-periodic one.

Positive part

Proposition

If a subshift contains a 1-periodic configuration, then it contains a 2-periodic one.

Berger '66

There are nonempty Wang subshifts (20426 tiles) that contain only aperiodic configurations.

Positive part

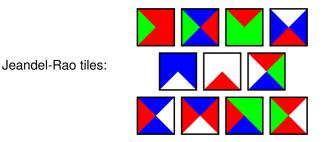
Proposition

If a subshift contains a 1-periodic configuration, then it contains a 2-periodic one.

Berger '66

There are nonempty Wang subshifts (20426 tiles) that contain only aperiodic configurations.

therefore, the previous algorithm does not halt.



Questions

Corollary

The domino problem is **co-semi-decidable-complete** (in dimension \geq 2).

Proof

Use an aperiodic subshift to embed the computation of a Turing machine, so that the subshift is empty iff the machine halts.

Part II

Aperiodic domino problem

A-periodic domino problem

Periodic domino problem

Input An SFT ; Output Does it contain a 2-periodic configuration?

semi-decidable-complete

A-periodic domino problem

Periodic domino problem

Input An SFT ; Output Does it contain a 2-periodic configuration?

semi-decidable-complete

Aperiodic domino problem

Input An SFT;

Output Does it contain an aperiodic configuration?

co-semi-decidable-hard

(all decidable in dimension 1)

Aperiodic domino problem

Aperiodic domino problem

Input An SFT ; Output Does it contain an aperiodic configuration?

Some thoughts

How could we check that no configuration manages to avoid all periods?

A pattern / configuration x avoids period \vec{p} in \vec{i} iff $x_{\vec{i}} \neq x_{\vec{i}+\vec{p}}$.

Aperiodic domino problem

Aperiodic domino problem

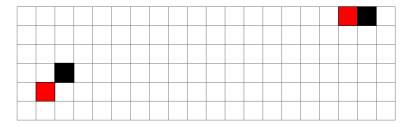
Input An SFT ; Output Does it contain an aperiodic configuration?

Some thoughts

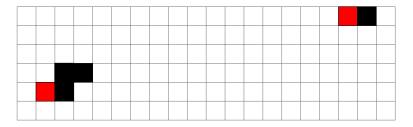
- How could we check that no configuration manages to avoid all periods?
- Enumerate all locally admissible $n \times n$ patterns;
- ▶ if no pattern avoids all "small" periods, what can we conclude?

A pattern / configuration x avoids period \vec{p} in \vec{i} iff $x_{\vec{i}} \neq x_{\vec{i}+\vec{p}}$.

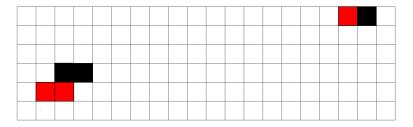
Assume that x avoids both periods (1, 0), (1, 1).



Assume that x avoids both periods (1, 0), (1, 1).



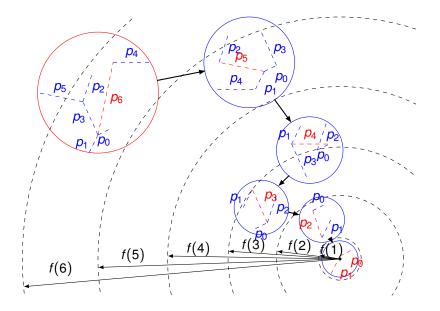
Assume that x avoids both periods (1, 0), (1, 1).



Assume that x avoids both periods (1, 0), (1, 1).



Assume that x avoids both periods (1, 0), (1, 1).



Shepherding lemma

Assume that a configuration *x* avoids all periods $\vec{p} \in \mathcal{P}$.

Then there is a configuration in $\overline{\mathcal{O}(x)}$ that avoids all periods $\vec{p} \in \mathcal{P}$ with $\|\vec{p}\| \leq n$ in a central ball of radius f(n) pour tout n,

where f is a universal computable fonction.

Shepherding lemma

Assume that a configuration *x* avoids all periods $\vec{p} \in \mathcal{P}$.

Then there is a configuration in $\overline{\mathcal{O}(x)}$ that avoids all periods $\vec{p} \in \mathcal{P}$ with $\|\vec{p}\| \leq n$ in a central ball of radius f(n) pour tout n,

where f is a universal computable fonction.

Corollary (Grandjean, H., Vanier)

The aperiodic domino problem

Input An SFT;

Output Does it contain an aperiodic configuration?

is co-semi-decidable-complete.

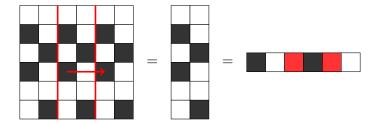
Corollary (Grandjean, H., Vanier) The aperiodic domino problem Input An SFT ; Output Does it contain an aperiodic configuration? is **co-semi-decidable-complete**.

Algorithm

- Enumerate all locally admissible $n \times n$ patterns.
- ▶ If no pattern avoids all periods \vec{p} s.t. $\|\vec{p}\| \le k$ in a central ball $f(k) \times f(k)$: output **No**.
- Otherwise: continue.

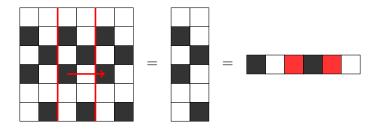
Part III

Subshifts with no aperiodic configurations



Proposition

In a $\mathbb{Z}^2\text{-subshift},$ the subspace of configurations with a given period is conjugate to a $\mathbb{Z}\text{-subshift}.$



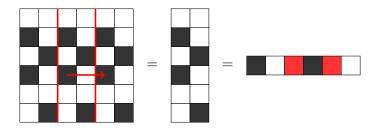
Proposition

In a \mathbb{Z}^2 -subshift, the subspace of configurations with a given period is conjugate to a \mathbb{Z} -subshift.

Théorème (Grandjean, H., Vanier)

Let X be a subshift with no aperiodic configuration.

There is a finite set of periods $\{\vec{p_1}, \ldots, \vec{p_n}\}$ such that any configuration in *X* has some period $\vec{p_i}$.



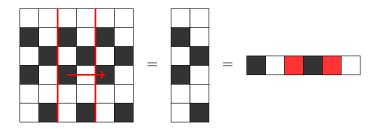
Théorème (Grandjean, H., Vanier)

Let X be a subshift with no aperiodic configuration.

There is a finite set of periods $\{\vec{p_1}, \ldots, \vec{p_n}\}$ such that any configuration in *X* has some period $\vec{p_i}$.

Proof

Previous result + compactness



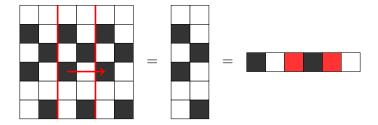
Théorème (Grandjean, H., Vanier)

Let X be a subshift with no aperiodic configuration.

There is a finite set of periods $\{\vec{p_1}, \ldots, \vec{p_n}\}$ such that any configuration in *X* has some period $\vec{p_i}$.

Corollary (Grandjean, H., Vanier)

Any $\mathbb{Z}^2\text{-subshift}$ with no aperiodic configuration is **almost conjugate** to a $\mathbb{Z}\text{-subshift}.$



Corollary (Grandjean, H., Vanier)

Any $\mathbb{Z}^2\text{-subshift}$ with no aperiodic configuration is almost conjugate to a $\mathbb{Z}\text{-subshift}.$

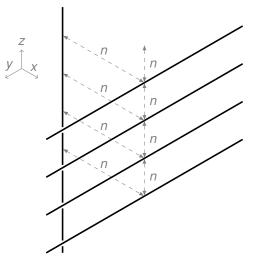
Proof

Choose your direction outside the finite set of periods.

- If some configuration avoids some set of periods, we can bound how far apart it does so and this makes compacity arguments work;
- ► For Z²-finite type subshifts, this makes the aperiodic domino problem as simple as we could hope.
- Some structural results in the non-finite type case.

- If some configuration avoids some set of periods, we can bound how far apart it does so and this makes compacity arguments work;
- ► For Z²-finite type subshifts, this makes the aperiodic domino problem as simple as we could hope.
- Some structural results in the non-finite type case.
- What about \mathbb{Z}^d , $d \geq 3$?
 - Lemmas are false (two lines need not intersect)
 - Results are false for general subshifts
 - How can we use the finite type hypothesis?

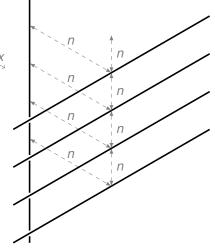
Conclusion



Conclusion

Conjectures (work in progress)

- ► We can gather avoidance points around a subspace of dimension *d* − 2.
- The finite type hypothesis might let us gather around a point.

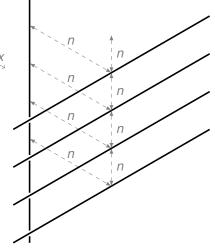


Thank you for your attention.

Conclusion

Conjectures (work in progress)

- ► We can gather avoidance points around a subspace of dimension *d* − 2.
- The finite type hypothesis might let us gather around a point.



Thank you for your attention.