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Part I

Subshift, domino, periodicity



Subshifts

A a finite set called alphabet ({�,�});
Zd a d-dimensional grid;

A∗ the set of (finite) patterns;

AZd
the set of (infinite) configurations.

Subshift: the set of configurations that do not contain any pattern
from a given set of forbidden patterns F ⊂ A∗.

of finite type if F can be chosen finite.

A pattern is locally admissible if it does not contain any forbidden
pattern.
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d = 1,A = {�,�}, F = {��} :

d = 2,A = {�,�}, F = {��;��} :
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Input A subshift of finite type (a finite alphabet & finite set of
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Let’s try in dimension 1

A = {��},
F = {����,����,����,����,����,����}

No locally admissible pattern larger than ����������.

output: No
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Let’s try in dimension 1

A = {��}, F =
{����,����,����,����,����,����,����,����}

A periodic configuration:
. . .�������������������� . . . .

output: Yes
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Periodicity

A configuration x has period ~v ∈ Z2 if, for all coordinate~i ∈ Z2,

x~i+~v = x~i .

2 1 0

A configuration is k -periodic if it has k independent periods (and no
more).

that is, the set of its periods has dimension k .
aperiodic := 0-periodic



Algorithm for the domino problem?

Domino problem

Input A subshift of finite type;

Output Does it contain a configuration?

Algorithm sketch (Wang 1961)
For n ranging from 1 to∞:

I Enumerate all locally admissible patterns n × n

I If there is none: output No
I If there is a 2-periodic one: output Yes.

I Otherwise: continue.
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Positive part

Proposition
If a subshift contains a 1-periodic configuration, then it contains a
2-periodic one.

Berger ‘66
There are nonempty Wang subshifts (20426 tiles) that contain only
aperiodic configurations.

therefore, the previous algorithm does not halt.

Jeandel-Rao tiles:
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Questions

Corollary
The domino problem is co-semi-decidable-complete (in dimension
≥ 2).

Proof
Use an aperiodic subshift to embed the computation of a Turing
machine, so that the subshift is empty iff the machine halts.



Part II

Aperiodic domino problem



A-periodic domino problem

Periodic domino problem

Input An SFT ;

Output Does it contain a 2-periodic configuration?

semi-decidable-complete

Aperiodic domino problem

Input An SFT ;

Output Does it contain an aperiodic configuration?

co-semi-decidable-hard
(all decidable in dimension 1)
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Some thoughts

I How could we check that no configuration manages to avoid all
periods?

I Enumerate all locally admissible n × n patterns;

I if no pattern avoids all “small” periods, what can we conclude?

A pattern / configuration x avoids period ~p in~i iff x~i 6= x~i+~p.
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Shepherding avoidance points

p6
p5

p4

p3

p2

p1 p0

p0

p3

p1

p2p5

p4

p0p3

p1 p2p4

p0

p3p1
p2

p0

p1
p2

p0
p1

f (1)f (2)f (3)f (4)f (5)
f (6)



Shepherding avoidance points

Shepherding lemma
Assume that a configuration x avoids all periods ~p ∈ P .

Then there is a configuration in O(x) that avoids all periods ~p ∈ P
with ‖~p‖ ≤ n in a central ball of radius f (n) pour tout n,

where f is a universal computable fonction.

Corollary (Grandjean, H., Vanier)
The aperiodic domino problem

Input An SFT ;

Output Does it contain an aperiodic configuration?

is co-semi-decidable-complete.
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Main result

Corollary (Grandjean, H., Vanier)
The aperiodic domino problem

Input An SFT ;

Output Does it contain an aperiodic configuration?

is co-semi-decidable-complete.

Algorithm

I Enumerate all locally admissible n × n patterns.

I If no pattern avoids all periods ~p s.t. ‖~p‖ ≤ k in a central ball
f (k)× f (k): output No.

I Otherwise: continue.



Part III

Subshifts with no aperiodic
configurations



Subshifts with no aperiodic configuration

= =

Proposition
In a Z2-subshift, the subspace of configurations with a given period is
conjugate to a Z-subshift.
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Subshifts with no aperiodic configuration

= =

Corollary (Grandjean, H., Vanier)
Any Z2-subshift with no aperiodic configuration is almost conjugate
to a Z-subshift.

Proof
Choose your direction outside the finite set of periods.



Conclusion

I If some configuration avoids some set of periods, we can bound
how far apart it does so and this makes compacity arguments
work;

I For Z2-finite type subshifts, this makes the aperiodic domino
problem as simple as we could hope.

I Some structural results in the non-finite type case.

I What about Zd , d ≥ 3 ?

• Lemmas are false (two lines need not intersect)
• Results are false for general subshifts
• How can we use the finite type hypothesis?
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Conclusion

Conjectures (work in
progress)

I We can gather avoidance
points around a subspace
of dimension d − 2.

I The finite type hypothesis
might let us gather around a
point.
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